Jinzhong Ling, Yucheng Wang, Jinkun Guo, Xin Liu, Xiaorui Wang
{"title":"Near-Field Nano-Focusing and Nano-Imaging of Dielectric Microparticle Lenses.","authors":"Jinzhong Ling, Yucheng Wang, Jinkun Guo, Xin Liu, Xiaorui Wang","doi":"10.3390/nano14231974","DOIUrl":null,"url":null,"abstract":"<p><p>Compared with traditional far-field objective lenses, microparticle lenses have a distinct advantage of nonobservance of the diffraction limit, which has attracted extensive attention for its application in subwavelength photolithography and super-resolution imaging. In this article, a complete simulation model for a microparticle lens assisted microscopic imaging system was built to analyze the imaging characteristics of any shape of microparticle lens. With this model, we simulated the resolution of a conventional objective lens, a microsphere lens and a hollow microsphere lens, which verified the correctness of our simulation model and demonstrated the super-resolution imaging ability of microsphere lenses. Secondly, the focusing and imaging characteristics of four typical microparticle lenses are illustrated, and how the focal spot affects imaging resolution and imaging quality is analyzed. Upon this conclusion, we reformed and upgraded the microsphere lens with several parameters for smaller focal spots and higher imaging resolution. Finally, three types of microparticle lenses were designed through the optimized parameters and their focusing and imaging characteristics were demonstrated with a minimum FWHM of 140 nm at the focal plane and a highest imaging resolution around 70 nm (~λ/6). Our work opens up a new perspective of super-resolution imaging with near-field microparticle lens.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 23","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14231974","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Compared with traditional far-field objective lenses, microparticle lenses have a distinct advantage of nonobservance of the diffraction limit, which has attracted extensive attention for its application in subwavelength photolithography and super-resolution imaging. In this article, a complete simulation model for a microparticle lens assisted microscopic imaging system was built to analyze the imaging characteristics of any shape of microparticle lens. With this model, we simulated the resolution of a conventional objective lens, a microsphere lens and a hollow microsphere lens, which verified the correctness of our simulation model and demonstrated the super-resolution imaging ability of microsphere lenses. Secondly, the focusing and imaging characteristics of four typical microparticle lenses are illustrated, and how the focal spot affects imaging resolution and imaging quality is analyzed. Upon this conclusion, we reformed and upgraded the microsphere lens with several parameters for smaller focal spots and higher imaging resolution. Finally, three types of microparticle lenses were designed through the optimized parameters and their focusing and imaging characteristics were demonstrated with a minimum FWHM of 140 nm at the focal plane and a highest imaging resolution around 70 nm (~λ/6). Our work opens up a new perspective of super-resolution imaging with near-field microparticle lens.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.