{"title":"The Effect of Zirconium on the Microstructure and Properties of Cast AlCoCrFeNi<sub>2.1</sub> Eutectic High-Entropy Alloy.","authors":"Rongbin Li, Weichu Sun, Saiya Li, Zhijun Cheng","doi":"10.3390/ma17235938","DOIUrl":null,"url":null,"abstract":"<p><p>To improve the performance of AlCoCrFeNi<sub>2.1</sub> eutectic high-entropy alloys (EHEA) to meet industrial application requirements, Zr<sub>x</sub>AlCoCrFeNi<sub>2.1</sub> high-entropy alloys (x = 0, 0.01, 0.05, 0.1) were synthesized through vacuum induction melting. Their microstructures were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). Additionally, the hardness, low-temperature compressive properties, nanoindentation creep behavior, and corrosion resistance of these alloys were evaluated. The results showed that AlCoCrFeNi<sub>2.1</sub> is a eutectic high-entropy alloy composed of FCC and B2 phases, with the FCC phase being the primary phase. The addition of Zr significantly affected the phase stability, promoting the formation of intermetallic compounds such as Ni<sub>7</sub>Zr<sub>2</sub>, which acted as a bridge between the FCC and B2 phases. Zr addition enhanced the performance of the alloy through solid-solution and dispersion strengthening. However, as the Zr content increased, Ni gradually precipitated from the B2 phase, leading to a reduction in the fraction of the B2 phase. Consequently, at x = 0.1, the microhardness and compressive strength decreased at room temperature. Furthermore, a higher Zr content reduced the sensitivity of the alloy to loading rate changes during creep. At x = 0.05, the creep exponent exceeded 3, indicating that dislocation creep mechanisms dominated. In the Zr<sub>x</sub>AlCoCrFeNi<sub>2.1</sub> (where x = 0, 0.01, 0.05, 0.1) alloys, when the Zr content is 0.1, the alloy exhibits the lowest self-corrosion current density of 0.034197 μA/cm<sup>2</sup> and the highest pitting potential of 323.06 mV, indicating that the alloy has the best corrosion resistance.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"17 23","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11643467/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma17235938","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
To improve the performance of AlCoCrFeNi2.1 eutectic high-entropy alloys (EHEA) to meet industrial application requirements, ZrxAlCoCrFeNi2.1 high-entropy alloys (x = 0, 0.01, 0.05, 0.1) were synthesized through vacuum induction melting. Their microstructures were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). Additionally, the hardness, low-temperature compressive properties, nanoindentation creep behavior, and corrosion resistance of these alloys were evaluated. The results showed that AlCoCrFeNi2.1 is a eutectic high-entropy alloy composed of FCC and B2 phases, with the FCC phase being the primary phase. The addition of Zr significantly affected the phase stability, promoting the formation of intermetallic compounds such as Ni7Zr2, which acted as a bridge between the FCC and B2 phases. Zr addition enhanced the performance of the alloy through solid-solution and dispersion strengthening. However, as the Zr content increased, Ni gradually precipitated from the B2 phase, leading to a reduction in the fraction of the B2 phase. Consequently, at x = 0.1, the microhardness and compressive strength decreased at room temperature. Furthermore, a higher Zr content reduced the sensitivity of the alloy to loading rate changes during creep. At x = 0.05, the creep exponent exceeded 3, indicating that dislocation creep mechanisms dominated. In the ZrxAlCoCrFeNi2.1 (where x = 0, 0.01, 0.05, 0.1) alloys, when the Zr content is 0.1, the alloy exhibits the lowest self-corrosion current density of 0.034197 μA/cm2 and the highest pitting potential of 323.06 mV, indicating that the alloy has the best corrosion resistance.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.