Performance and Emission Characteristics of a Small Gas Turbine Engine Using Hexanol as a Biomass-Derived Fuel.

IF 3.1 3区 材料科学 Q3 CHEMISTRY, PHYSICAL
Materials Pub Date : 2024-12-09 DOI:10.3390/ma17236011
Tomasz Suchocki
{"title":"Performance and Emission Characteristics of a Small Gas Turbine Engine Using Hexanol as a Biomass-Derived Fuel.","authors":"Tomasz Suchocki","doi":"10.3390/ma17236011","DOIUrl":null,"url":null,"abstract":"<p><p>The global transition to renewable energy has amplified the need for sustainable aviation fuels. This study investigates hexanol, a biomass-derived alcohol, as an alternative fuel for small-scale gas turbines. Experimental trials were conducted on a JETPOL GTM-160 turbine, assessing blends of 25% (He25) and 50% (He50) hexanol with kerosene (JET A) under rotational velocities ranging from 40,000 to 110,000 RPM. The parameters measured included thrust-specific fuel consumption (TSFC), turbine inlet and outlet velocities, and the emission indices of NO<sub>x</sub> and CO. The results demonstrated that the He25 and He50 blends achieved comparable thermal efficiency to pure JET A at high rotational velocities, despite requiring higher fuel flows due to hexanol's lower heating value. CO emissions decreased significantly at higher velocities, reflecting improved combustion efficiency with hexanol blends, while NO<sub>x</sub> emissions exhibited a slight increase, attributed to the oxygen content of the fuel. This study contributes a novel analysis of hexanol-kerosene blends in gas turbines, offering insights into their operational and emission characteristics. These findings underscore hexanol's potential as an environmentally friendly alternative fuel, aligning with global efforts to reduce fossil fuel dependency and carbon emissions.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"17 23","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma17236011","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The global transition to renewable energy has amplified the need for sustainable aviation fuels. This study investigates hexanol, a biomass-derived alcohol, as an alternative fuel for small-scale gas turbines. Experimental trials were conducted on a JETPOL GTM-160 turbine, assessing blends of 25% (He25) and 50% (He50) hexanol with kerosene (JET A) under rotational velocities ranging from 40,000 to 110,000 RPM. The parameters measured included thrust-specific fuel consumption (TSFC), turbine inlet and outlet velocities, and the emission indices of NOx and CO. The results demonstrated that the He25 and He50 blends achieved comparable thermal efficiency to pure JET A at high rotational velocities, despite requiring higher fuel flows due to hexanol's lower heating value. CO emissions decreased significantly at higher velocities, reflecting improved combustion efficiency with hexanol blends, while NOx emissions exhibited a slight increase, attributed to the oxygen content of the fuel. This study contributes a novel analysis of hexanol-kerosene blends in gas turbines, offering insights into their operational and emission characteristics. These findings underscore hexanol's potential as an environmentally friendly alternative fuel, aligning with global efforts to reduce fossil fuel dependency and carbon emissions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials
Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
5.80
自引率
14.70%
发文量
7753
审稿时长
1.2 months
期刊介绍: Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信