{"title":"Research on Natural Fiber Microstructure Detection Method Based on CA-DeepLabv3.","authors":"Shuaishuai Lv, Xiaoyuan Li, Hitoshi Takagi, Zhengjie Hou, Yifei Zhai, Linfei Chen, Hongjun Ni","doi":"10.3390/ma17235942","DOIUrl":null,"url":null,"abstract":"<p><p>Natural fibers exhibit noticeable variations in their cross-sections, and measurements assuming a circular cross-section can lead to errors in the values of their properties. Providing more accurate geometric information of fiber cross-sections is a key challenge. Based on microscopic images of natural fiber structures, this paper proposes a natural fiber microstructure detection method based on the CA-DeepLabv3+ network model. The study investigates a natural fiber microstructure image segmentation algorithm that uses MobileNetV2 as the feature extraction backbone network, optimizes the Atrous Spatial Pyramid Pooling (ASPP) module through cascading, and embeds an Efficient Multi-scale Attention (EMA) mechanism. The results show that the algorithm proposed in this paper can accurately segment the microstructures of multiple types of natural fibers, achieving an average pixel accuracy (mPA) of 95.2% and a mean Intersection over Union (mIoU) of 90.7%.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"17 23","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11643536/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma17235942","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Natural fibers exhibit noticeable variations in their cross-sections, and measurements assuming a circular cross-section can lead to errors in the values of their properties. Providing more accurate geometric information of fiber cross-sections is a key challenge. Based on microscopic images of natural fiber structures, this paper proposes a natural fiber microstructure detection method based on the CA-DeepLabv3+ network model. The study investigates a natural fiber microstructure image segmentation algorithm that uses MobileNetV2 as the feature extraction backbone network, optimizes the Atrous Spatial Pyramid Pooling (ASPP) module through cascading, and embeds an Efficient Multi-scale Attention (EMA) mechanism. The results show that the algorithm proposed in this paper can accurately segment the microstructures of multiple types of natural fibers, achieving an average pixel accuracy (mPA) of 95.2% and a mean Intersection over Union (mIoU) of 90.7%.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.