{"title":"Nanoscale Indentation-Induced Crystal Plasticity in CrCoNi Medium-Entropy Alloys Containing Short-Range Order.","authors":"Meijing Ren, Fengbo Han, Xu Zhu, Yue Peng, Yanqing Zu, Peitao Liu, Ailing Feng","doi":"10.3390/ma17235932","DOIUrl":null,"url":null,"abstract":"<p><p>CrCoNi medium-entropy alloys (MEAs), characterised by their high configurational entropies, have become a research hotspot in materials science. Recent studies have indicated that MEAs exhibit short-range order (SRO), which affects their deformation mechanisms. In this study, the micro-mechanisms of SRO within the framework of mesoscale continuum mechanics are mathematically evaluated using an advanced, non-local crystal plasticity constitutive framework. Furthermore, a crystal plasticity model considering the impact of SRO on slip is established. By combining nanoindentation simulations and multi-level grain model tensile simulations, the load-displacement and stress-strain curves demonstrated that the presence of SRO increases the hardness of MEAs. More specifically, considering the distribution of shear strain and geometrically necessary dislocations, the heterogeneity of MEAs increases with an increase in the degree of SRO. This study not only enriches the crystal plasticity theory but also provides references for the microstructure and performance regulation of high-performance multi-level grain structure materials.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"17 23","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11642976/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma17235932","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
CrCoNi medium-entropy alloys (MEAs), characterised by their high configurational entropies, have become a research hotspot in materials science. Recent studies have indicated that MEAs exhibit short-range order (SRO), which affects their deformation mechanisms. In this study, the micro-mechanisms of SRO within the framework of mesoscale continuum mechanics are mathematically evaluated using an advanced, non-local crystal plasticity constitutive framework. Furthermore, a crystal plasticity model considering the impact of SRO on slip is established. By combining nanoindentation simulations and multi-level grain model tensile simulations, the load-displacement and stress-strain curves demonstrated that the presence of SRO increases the hardness of MEAs. More specifically, considering the distribution of shear strain and geometrically necessary dislocations, the heterogeneity of MEAs increases with an increase in the degree of SRO. This study not only enriches the crystal plasticity theory but also provides references for the microstructure and performance regulation of high-performance multi-level grain structure materials.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.