Nanoscale Indentation-Induced Crystal Plasticity in CrCoNi Medium-Entropy Alloys Containing Short-Range Order.

IF 3.1 3区 材料科学 Q3 CHEMISTRY, PHYSICAL
Materials Pub Date : 2024-12-04 DOI:10.3390/ma17235932
Meijing Ren, Fengbo Han, Xu Zhu, Yue Peng, Yanqing Zu, Peitao Liu, Ailing Feng
{"title":"Nanoscale Indentation-Induced Crystal Plasticity in CrCoNi Medium-Entropy Alloys Containing Short-Range Order.","authors":"Meijing Ren, Fengbo Han, Xu Zhu, Yue Peng, Yanqing Zu, Peitao Liu, Ailing Feng","doi":"10.3390/ma17235932","DOIUrl":null,"url":null,"abstract":"<p><p>CrCoNi medium-entropy alloys (MEAs), characterised by their high configurational entropies, have become a research hotspot in materials science. Recent studies have indicated that MEAs exhibit short-range order (SRO), which affects their deformation mechanisms. In this study, the micro-mechanisms of SRO within the framework of mesoscale continuum mechanics are mathematically evaluated using an advanced, non-local crystal plasticity constitutive framework. Furthermore, a crystal plasticity model considering the impact of SRO on slip is established. By combining nanoindentation simulations and multi-level grain model tensile simulations, the load-displacement and stress-strain curves demonstrated that the presence of SRO increases the hardness of MEAs. More specifically, considering the distribution of shear strain and geometrically necessary dislocations, the heterogeneity of MEAs increases with an increase in the degree of SRO. This study not only enriches the crystal plasticity theory but also provides references for the microstructure and performance regulation of high-performance multi-level grain structure materials.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"17 23","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11642976/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma17235932","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

CrCoNi medium-entropy alloys (MEAs), characterised by their high configurational entropies, have become a research hotspot in materials science. Recent studies have indicated that MEAs exhibit short-range order (SRO), which affects their deformation mechanisms. In this study, the micro-mechanisms of SRO within the framework of mesoscale continuum mechanics are mathematically evaluated using an advanced, non-local crystal plasticity constitutive framework. Furthermore, a crystal plasticity model considering the impact of SRO on slip is established. By combining nanoindentation simulations and multi-level grain model tensile simulations, the load-displacement and stress-strain curves demonstrated that the presence of SRO increases the hardness of MEAs. More specifically, considering the distribution of shear strain and geometrically necessary dislocations, the heterogeneity of MEAs increases with an increase in the degree of SRO. This study not only enriches the crystal plasticity theory but also provides references for the microstructure and performance regulation of high-performance multi-level grain structure materials.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials
Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
5.80
自引率
14.70%
发文量
7753
审稿时长
1.2 months
期刊介绍: Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信