Improved Method for the Calculation of the Air Film Thickness of an Air Cushion Belt Conveyor.

IF 3.1 3区 材料科学 Q3 CHEMISTRY, PHYSICAL
Materials Pub Date : 2024-12-09 DOI:10.3390/ma17236020
Bo Song, Hongliang Chen, Long Sun, Kunpeng Xu, Xiaoyong Ren
{"title":"Improved Method for the Calculation of the Air Film Thickness of an Air Cushion Belt Conveyor.","authors":"Bo Song, Hongliang Chen, Long Sun, Kunpeng Xu, Xiaoyong Ren","doi":"10.3390/ma17236020","DOIUrl":null,"url":null,"abstract":"<p><p>The air film thickness is an important parameter of an air cushion belt conveyor, which directly affects the compressed air supply power and operating resistance of the system. Therefore, it is important to calculate the bottom thickness of the gas film accurately in the design stage. A calculation method for the thickness of a conveyor air cushion was derived based on the mathematical model of the air cushion flow field for a multi row uniformly distributed air cushion structure. Meanwhile, the algorithm was validated based on a Fluent 3D flow field numerical simulation and experiments. Through verification, it was found that due to the algorithm's assumption that the increase in the gas flow rate only existed at the axis of the gas hole, there was a sudden change in the calculation results of the gas flow rate at the axis of the gas hole. The sudden change in the gas flow rate had caused the calculation results of the air cushion thickness to experience abrupt and discontinuous changes. Furthermore, the calculation method for air cushion thickness was revised based on the verification results. Compared with the experimental test results, the average error of the calculation results of the algorithm proposed in this paper was 14.27%.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"17 23","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma17236020","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The air film thickness is an important parameter of an air cushion belt conveyor, which directly affects the compressed air supply power and operating resistance of the system. Therefore, it is important to calculate the bottom thickness of the gas film accurately in the design stage. A calculation method for the thickness of a conveyor air cushion was derived based on the mathematical model of the air cushion flow field for a multi row uniformly distributed air cushion structure. Meanwhile, the algorithm was validated based on a Fluent 3D flow field numerical simulation and experiments. Through verification, it was found that due to the algorithm's assumption that the increase in the gas flow rate only existed at the axis of the gas hole, there was a sudden change in the calculation results of the gas flow rate at the axis of the gas hole. The sudden change in the gas flow rate had caused the calculation results of the air cushion thickness to experience abrupt and discontinuous changes. Furthermore, the calculation method for air cushion thickness was revised based on the verification results. Compared with the experimental test results, the average error of the calculation results of the algorithm proposed in this paper was 14.27%.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials
Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
5.80
自引率
14.70%
发文量
7753
审稿时长
1.2 months
期刊介绍: Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信