Yujie Yu, Xiang Zhang, Chunjian Hu, Liangkun Liu, Haibo Wang
{"title":"Fatigue Crack Growth Performance of Q370qENH Weathering Bridge Steel and Butt Welds.","authors":"Yujie Yu, Xiang Zhang, Chunjian Hu, Liangkun Liu, Haibo Wang","doi":"10.3390/ma17236015","DOIUrl":null,"url":null,"abstract":"<p><p>Weathering steel possesses good atmospheric corrosion resistance and is increasingly applied in highway and railway bridges. The fatigue performance of the weld joint is an important issue in bridge engineering. This study experimentally investigates the microstructural properties and fracture crack growth behaviors of a Q370qENH bridge weathering steel weld joint. The FCG parameters of the base steel, butt weld, and HAZs, considering the effect of different plate thicknesses and stress ratios, are analyzed. Microstructural features, microhardness, and fatigue fracture surfaces are carefully inspected. The FCG rates of different weld regions in the stable crack growth stage are obtained using integral formulas based on the Paris and Walker law. The test results indicate that the heating and cooling process during the welding of Q370qENH steel creates improved microstructures with refined grain sizes and fewer impurities, thus leading to improved FCG performances in the HAZ and weld regions. The crack growth rate of Q370qENH weld regions increases with the stress ratio, and the influencing extent increasingly ranks as the base steel, HAZ, and the weld. The thick plate has a slightly slower fatigue crack growth rate for the Q370qENH weld joints. The Q370qENH base steel presents the highest fatigue crack growth rate, followed by the heat-treated and HAZ cases, while the weld area exhibits the lowest FCG rate. The Paris law coefficients of different regions of Q370qENH welds are presented. The collected data serve as a valuable reference for future analyses of fatigue crack propagation problems of Q370qENH steel bridge joints.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"17 23","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11643549/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma17236015","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Weathering steel possesses good atmospheric corrosion resistance and is increasingly applied in highway and railway bridges. The fatigue performance of the weld joint is an important issue in bridge engineering. This study experimentally investigates the microstructural properties and fracture crack growth behaviors of a Q370qENH bridge weathering steel weld joint. The FCG parameters of the base steel, butt weld, and HAZs, considering the effect of different plate thicknesses and stress ratios, are analyzed. Microstructural features, microhardness, and fatigue fracture surfaces are carefully inspected. The FCG rates of different weld regions in the stable crack growth stage are obtained using integral formulas based on the Paris and Walker law. The test results indicate that the heating and cooling process during the welding of Q370qENH steel creates improved microstructures with refined grain sizes and fewer impurities, thus leading to improved FCG performances in the HAZ and weld regions. The crack growth rate of Q370qENH weld regions increases with the stress ratio, and the influencing extent increasingly ranks as the base steel, HAZ, and the weld. The thick plate has a slightly slower fatigue crack growth rate for the Q370qENH weld joints. The Q370qENH base steel presents the highest fatigue crack growth rate, followed by the heat-treated and HAZ cases, while the weld area exhibits the lowest FCG rate. The Paris law coefficients of different regions of Q370qENH welds are presented. The collected data serve as a valuable reference for future analyses of fatigue crack propagation problems of Q370qENH steel bridge joints.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.