{"title":"Experimental Study on the Size Effect of Compression-Shear Fracture Characteristics of Rock-like Materials Containing Open Cracks.","authors":"Zixuan Li, Shiyuan Huang, Chuan Lv, Cheng Liao, Xudong Li, Hongbo Du","doi":"10.3390/ma17235941","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding fracture mechanics in rock-like materials under compression-shear condition is critical for predicting failure mechanisms in various engineering applications, such as mining and civil infrastructure. This study conducted uniaxial compression tests on cubic gypsum specimens of varying sizes (side lengths of 75 mm, 100 mm, 125 mm, and 150 mm) and crack inclination angles (ranging from 0° to 90°) to assess the size effect on fracture behavior. The effects of specimen size and crack inclination on fracture characteristics, including strength, failure mode, and crack initiation angle, were analyzed based on the maximum tangential stress (MTS) criterion and the generalized maximum tangential stress (GMTS) criterion, with relative critical size (α) and relative openness (<i>η</i>). Results indicate that the crack initiation angle increases with crack inclination, while compressive strength decreases significantly with increasing specimen size. For example, at a 30° crack inclination, the peak compressive strength of 75 mm specimens was 2.53 MPa, whereas that of 150 mm specimens decreased to 1.05 MPa. Crack type and failure mode were found to be primarily influenced by crack inclination rather than specimen size. The experimental crack initiation angle aligned with the theoretical crack initiation angle at inclinations below 50° but diverged at higher inclinations. A linear relationship was established between <i>r</i><sub>c</sub> and specimen size (<i>L</i>) under compression-shear stress, expressed as rc=-0.01772L+3.54648; larger specimens exhibited increased tangential stress at the crack tip, leading to earlier macroscopic crack formation, while <i>r</i><sub>c</sub> decreased as specimen size increased. These results underscore the significant influence of size on fracture behavior in quasi-brittle materials under compression-shear stress, providing essential insights for predicting material failure in rock-like structures.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"17 23","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11643453/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma17235941","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding fracture mechanics in rock-like materials under compression-shear condition is critical for predicting failure mechanisms in various engineering applications, such as mining and civil infrastructure. This study conducted uniaxial compression tests on cubic gypsum specimens of varying sizes (side lengths of 75 mm, 100 mm, 125 mm, and 150 mm) and crack inclination angles (ranging from 0° to 90°) to assess the size effect on fracture behavior. The effects of specimen size and crack inclination on fracture characteristics, including strength, failure mode, and crack initiation angle, were analyzed based on the maximum tangential stress (MTS) criterion and the generalized maximum tangential stress (GMTS) criterion, with relative critical size (α) and relative openness (η). Results indicate that the crack initiation angle increases with crack inclination, while compressive strength decreases significantly with increasing specimen size. For example, at a 30° crack inclination, the peak compressive strength of 75 mm specimens was 2.53 MPa, whereas that of 150 mm specimens decreased to 1.05 MPa. Crack type and failure mode were found to be primarily influenced by crack inclination rather than specimen size. The experimental crack initiation angle aligned with the theoretical crack initiation angle at inclinations below 50° but diverged at higher inclinations. A linear relationship was established between rc and specimen size (L) under compression-shear stress, expressed as rc=-0.01772L+3.54648; larger specimens exhibited increased tangential stress at the crack tip, leading to earlier macroscopic crack formation, while rc decreased as specimen size increased. These results underscore the significant influence of size on fracture behavior in quasi-brittle materials under compression-shear stress, providing essential insights for predicting material failure in rock-like structures.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.