Modification of Light-Cured Composition for Permanent Dental Fillings; Mass Stability of New Composites Containing Quinoline and Quinoxaline Derivatives in Solutions Simulating the Oral Cavity Environment.
{"title":"Modification of Light-Cured Composition for Permanent Dental Fillings; Mass Stability of New Composites Containing Quinoline and Quinoxaline Derivatives in Solutions Simulating the Oral Cavity Environment.","authors":"Ilona Pyszka, Beata Jędrzejewska","doi":"10.3390/ma17236003","DOIUrl":null,"url":null,"abstract":"<p><p>Billions of patients struggle with dental diseases every year. These mainly comprise caries and related diseases. This results in an extremely high demand for innovative, polymer composite filling materials that meet a number of dental requirements. The aim of the study was to modify the light-cured composition of permanent dental fillings by changing the composition of the liquid organic matrix. New photoinitiators (DQ1-DQ5) based on a quinoline or quinoxaline skeleton and a co-initiator-(phenylthio)acetic acid (PhTAA) were used. In addition, monomers that have been traditionally used in dental materials were replaced by trimethylolpropane triacrylate (TMPTA). The neutral dental glass IDG functioned as an inorganic filler. The influence of the storage conditions of the developed composites in solutions simulating the natural oral environment during the consumption of different meals on sorption, solubility, and mass changes was assessed. For the tests, fifty-four cylindrical composite samples were prepared according to ISO 4049 guidelines and stored in different solutions. Distilled water, artificial saliva, heptane, 10% ethanol, and 3% acetic acid, as well as solutions containing pigments such as coffee, tea, red wine, and Coca-Cola, were used for the studies. The samples were stored in these solutions for 7, 14, 28, 35, 42, 49, 56, and 63 days at 37 °C. The sorption, solubility, and mass changes in the tested samples were determined, and the trend of these changes as a function of storage time was presented. The results were analyzed considering the nature of the solution used, i.e., aqueous, hydrophobic, and acidic. The properties evaluated changed in a different way, characteristic for each of the abovementioned solution groups. It was found that the type of solution simulating the natural environment of the oral cavity has the greatest influence on the sorption, solubility, and changes in the mass of the tested material.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"17 23","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11643679/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma17236003","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Billions of patients struggle with dental diseases every year. These mainly comprise caries and related diseases. This results in an extremely high demand for innovative, polymer composite filling materials that meet a number of dental requirements. The aim of the study was to modify the light-cured composition of permanent dental fillings by changing the composition of the liquid organic matrix. New photoinitiators (DQ1-DQ5) based on a quinoline or quinoxaline skeleton and a co-initiator-(phenylthio)acetic acid (PhTAA) were used. In addition, monomers that have been traditionally used in dental materials were replaced by trimethylolpropane triacrylate (TMPTA). The neutral dental glass IDG functioned as an inorganic filler. The influence of the storage conditions of the developed composites in solutions simulating the natural oral environment during the consumption of different meals on sorption, solubility, and mass changes was assessed. For the tests, fifty-four cylindrical composite samples were prepared according to ISO 4049 guidelines and stored in different solutions. Distilled water, artificial saliva, heptane, 10% ethanol, and 3% acetic acid, as well as solutions containing pigments such as coffee, tea, red wine, and Coca-Cola, were used for the studies. The samples were stored in these solutions for 7, 14, 28, 35, 42, 49, 56, and 63 days at 37 °C. The sorption, solubility, and mass changes in the tested samples were determined, and the trend of these changes as a function of storage time was presented. The results were analyzed considering the nature of the solution used, i.e., aqueous, hydrophobic, and acidic. The properties evaluated changed in a different way, characteristic for each of the abovementioned solution groups. It was found that the type of solution simulating the natural environment of the oral cavity has the greatest influence on the sorption, solubility, and changes in the mass of the tested material.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.