{"title":"Characterization of the Microstructure of Sr<sub>0.75</sub>Ba<sub>0.25</sub>Nb<sub>2</sub>O<sub>6</sub> Thin Films by Brillouin Light Scattering.","authors":"Alexey Pugachev, Andrey Tumarkin, Sergey Adichtchev, Ludmila Ivleva, Alexey Bogdan","doi":"10.3390/nano14231963","DOIUrl":null,"url":null,"abstract":"<p><p>Strontium-barium niobate (Sr<sub>x</sub>Ba<sub>(1-x)</sub>Nb<sub>2</sub>O<sub>6</sub>) films can be considered as a promising material for microwave applications due to high dielectric nonlinearity and relatively low losses. Since strontium-barium niobate has a disordered structure that determines its unique electrical properties, the identification of structural features of the Sr<sub>x</sub>Ba<sub>(1-x)</sub>Nb<sub>2</sub>O<sub>6</sub> films is the key to their successful use. The Sr<sub>x</sub>Ba<sub>(1-x)</sub>Nb<sub>2</sub>O<sub>6</sub> films were synthesized on a sapphire substrate by magnetron sputtering. The structure of the films was studied by both traditional methods of electron microscopy, X-ray diffraction, and the rarely used for thin films investigation Brillouin light scattering method, which was the focus of our study. We show that Brillouin light scattering is an excellent nondestructive method for studying the structural features of thin ferroelectric strontium-barium niobate films. An analysis of the features of the Brillouin light scattering spectra in thin-film structures and their comparison with the spectra of bulk crystals allowed us to determine with high accuracy the thickness of the films under study and their structural features determined by the resonant scattering of acoustic waves.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 23","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14231963","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Strontium-barium niobate (SrxBa(1-x)Nb2O6) films can be considered as a promising material for microwave applications due to high dielectric nonlinearity and relatively low losses. Since strontium-barium niobate has a disordered structure that determines its unique electrical properties, the identification of structural features of the SrxBa(1-x)Nb2O6 films is the key to their successful use. The SrxBa(1-x)Nb2O6 films were synthesized on a sapphire substrate by magnetron sputtering. The structure of the films was studied by both traditional methods of electron microscopy, X-ray diffraction, and the rarely used for thin films investigation Brillouin light scattering method, which was the focus of our study. We show that Brillouin light scattering is an excellent nondestructive method for studying the structural features of thin ferroelectric strontium-barium niobate films. An analysis of the features of the Brillouin light scattering spectra in thin-film structures and their comparison with the spectra of bulk crystals allowed us to determine with high accuracy the thickness of the films under study and their structural features determined by the resonant scattering of acoustic waves.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.