Tomasz Wierzbicki, Gabriela Rutkowska, Mariusz Żółtowski, Mykola Nagirniak
{"title":"Behavior of Weathering Steel in Artificial Harsh Environment.","authors":"Tomasz Wierzbicki, Gabriela Rutkowska, Mariusz Żółtowski, Mykola Nagirniak","doi":"10.3390/ma17235919","DOIUrl":null,"url":null,"abstract":"<p><p>The safety and durability of engineering structures, like bridges, which are designed from weathering steels, are conditioned by the development of a sufficiently protective layer of corrosion products. Air pollution, the microclimate around the bridge, the time of wetness, the structural solution of the bridge, and the position and orientation of the surface within the bridge structure all influence the development of protective layers on the surface of the weathering steel. The condition of the formed patina relies on the working conditions of the structure. In fact, it is exposed to various types of salts that appear during the operation of the facility. In this article, the strength parameters of uncoated weathering steel were tested after accelerated aging of welded steel samples in a salt spray chamber. The tests showed the expected degradation of steel after long-term exposure to salt and changes in the strength parameters such as tensile strength, yield strength, and, importantly, impact strength, both in the steel itself and in the elements of the welded connection. The obtained results showed that the change is influenced by both the conditions in which the samples are made (welding method) and the direction of the welded joint (along or across the rolling direction).</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"17 23","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11643703/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma17235919","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The safety and durability of engineering structures, like bridges, which are designed from weathering steels, are conditioned by the development of a sufficiently protective layer of corrosion products. Air pollution, the microclimate around the bridge, the time of wetness, the structural solution of the bridge, and the position and orientation of the surface within the bridge structure all influence the development of protective layers on the surface of the weathering steel. The condition of the formed patina relies on the working conditions of the structure. In fact, it is exposed to various types of salts that appear during the operation of the facility. In this article, the strength parameters of uncoated weathering steel were tested after accelerated aging of welded steel samples in a salt spray chamber. The tests showed the expected degradation of steel after long-term exposure to salt and changes in the strength parameters such as tensile strength, yield strength, and, importantly, impact strength, both in the steel itself and in the elements of the welded connection. The obtained results showed that the change is influenced by both the conditions in which the samples are made (welding method) and the direction of the welded joint (along or across the rolling direction).
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.