Microstructure of the Working Layer of X46Cr13 Steel in a Bimetal System with Gray Cast Iron.

IF 3.1 3区 材料科学 Q3 CHEMISTRY, PHYSICAL
Materials Pub Date : 2024-12-04 DOI:10.3390/ma17235933
Natalia Przyszlak, Tomasz Wróbel, Agnieszka Dulska, Paweł M Nuckowski, Dariusz Łukowiec, Marcin Stawarz
{"title":"Microstructure of the Working Layer of X46Cr13 Steel in a Bimetal System with Gray Cast Iron.","authors":"Natalia Przyszlak, Tomasz Wróbel, Agnieszka Dulska, Paweł M Nuckowski, Dariusz Łukowiec, Marcin Stawarz","doi":"10.3390/ma17235933","DOIUrl":null,"url":null,"abstract":"<p><p>The research conducted in this study aimed to determine whether the production of a layered casting in the material system of X46Cr13 steel (working part) and gray cast iron (base part) can be integrated with the hardening process of this steel within the conditions of the casting mold. Accordingly, a series of layered castings was produced by preparing the mold cavity, where a monolithic steel insert was poured with molten gray cast iron with flake graphite. The variable factors in the casting production process included the pouring temperature T<sub>p</sub> and the thickness of the support part g. Importantly, given that the hardening of the X46Cr13 steel insert occurred directly within the mold, the selection of casting parameters had to balance the ability to heat the insert to the austenitization temperature Tγ<sub>≥950°C</sub> while also creating thermokinetic conditions conducive to the rapid cooling of the system. Therefore, chromite sand-commonly regarded as a rapid-cooling material-was selected as the matrix for the molding material. Based on the conducted studies, it was determined that the thermokinetic properties of this material allowed the surface of the cast working part to be heated to the austenitization temperature. The microstructure consisted of Cr(Fe) carbides within a martensitic-pearlitic matrix, with martensite filling the grains of the primary austenite and pearlite situated along their boundaries. The carbides were primarily located at grain boundaries and, to a lesser extent, within the primary austenite grains. Through transmission electron microscopy and X-ray diffractometry, the type of Cr(Fe) carbide in the microstructure of the working part was identified as M<sub>23</sub>C<sub>6</sub>.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"17 23","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11643908/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma17235933","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The research conducted in this study aimed to determine whether the production of a layered casting in the material system of X46Cr13 steel (working part) and gray cast iron (base part) can be integrated with the hardening process of this steel within the conditions of the casting mold. Accordingly, a series of layered castings was produced by preparing the mold cavity, where a monolithic steel insert was poured with molten gray cast iron with flake graphite. The variable factors in the casting production process included the pouring temperature Tp and the thickness of the support part g. Importantly, given that the hardening of the X46Cr13 steel insert occurred directly within the mold, the selection of casting parameters had to balance the ability to heat the insert to the austenitization temperature Tγ≥950°C while also creating thermokinetic conditions conducive to the rapid cooling of the system. Therefore, chromite sand-commonly regarded as a rapid-cooling material-was selected as the matrix for the molding material. Based on the conducted studies, it was determined that the thermokinetic properties of this material allowed the surface of the cast working part to be heated to the austenitization temperature. The microstructure consisted of Cr(Fe) carbides within a martensitic-pearlitic matrix, with martensite filling the grains of the primary austenite and pearlite situated along their boundaries. The carbides were primarily located at grain boundaries and, to a lesser extent, within the primary austenite grains. Through transmission electron microscopy and X-ray diffractometry, the type of Cr(Fe) carbide in the microstructure of the working part was identified as M23C6.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials
Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
5.80
自引率
14.70%
发文量
7753
审稿时长
1.2 months
期刊介绍: Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信