Residual force enhancement is not altered while force depression is amplified at the cellular level in old age.

IF 2.8 2区 生物学 Q2 BIOLOGY
Journal of Experimental Biology Pub Date : 2025-01-01 Epub Date: 2025-01-13 DOI:10.1242/jeb.248155
Binta S Njai, Avery Hinks, Makenna A Patterson, Geoffrey A Power
{"title":"Residual force enhancement is not altered while force depression is amplified at the cellular level in old age.","authors":"Binta S Njai, Avery Hinks, Makenna A Patterson, Geoffrey A Power","doi":"10.1242/jeb.248155","DOIUrl":null,"url":null,"abstract":"<p><p>Residual force enhancement (rFE) and residual force depression (rFD) are history-dependent properties of muscle which refer to increased and decreased isometric force following a lengthening or shortening contraction, respectively. The history dependence of force is greater in older than in younger human adults when assessed at the joint level. However, it is unclear whether this amplification of the history dependence of force in old age is owing to cellular mechanisms or is a consequence of age-related remodelling of muscle architecture. Single muscle fibres from the psoas major of old and young F344BN rats were dissected and chemically permeabilized. Single muscle fibres were mounted between a force transducer and length controller, then maximally activated (pCa 4.5). To assess rFD, fibres were actively shortened from 3.1 to 2.5 µm at both a slow (0.15 Lo s-1) and fast (0.6 Lo s-1) speed, with a fixed-end isometric reference contraction at 2.5 µm. To assess rFE, fibres were activated and stretched at 0.3 Lo s-1 from a sarcomere length of 2.2 to 2.5 µm, and 2.7 to 3.0 µm, and compared with fixed-end isometric reference contractions at 2.5 and 3.0 µm, respectively. Isometric force (2.5 µm) was ∼19% lower in muscle fibres from old as compared with young rats (P<0.001). Upon normalizing to fibre cross-sectional area, there was no age-related difference in specific force (P>0.05). rFD was ∼33% greater in muscle fibres from old as compared with young rats (P<0.05), while rFE did not differ between groups (P>0.05). rFD is amplified in old age at the cellular level, while rFE appears to be unchanged; thus, previously reported age-related modification of rFE occurs upstream from the cellular level.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jeb.248155","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Residual force enhancement (rFE) and residual force depression (rFD) are history-dependent properties of muscle which refer to increased and decreased isometric force following a lengthening or shortening contraction, respectively. The history dependence of force is greater in older than in younger human adults when assessed at the joint level. However, it is unclear whether this amplification of the history dependence of force in old age is owing to cellular mechanisms or is a consequence of age-related remodelling of muscle architecture. Single muscle fibres from the psoas major of old and young F344BN rats were dissected and chemically permeabilized. Single muscle fibres were mounted between a force transducer and length controller, then maximally activated (pCa 4.5). To assess rFD, fibres were actively shortened from 3.1 to 2.5 µm at both a slow (0.15 Lo s-1) and fast (0.6 Lo s-1) speed, with a fixed-end isometric reference contraction at 2.5 µm. To assess rFE, fibres were activated and stretched at 0.3 Lo s-1 from a sarcomere length of 2.2 to 2.5 µm, and 2.7 to 3.0 µm, and compared with fixed-end isometric reference contractions at 2.5 and 3.0 µm, respectively. Isometric force (2.5 µm) was ∼19% lower in muscle fibres from old as compared with young rats (P<0.001). Upon normalizing to fibre cross-sectional area, there was no age-related difference in specific force (P>0.05). rFD was ∼33% greater in muscle fibres from old as compared with young rats (P<0.05), while rFE did not differ between groups (P>0.05). rFD is amplified in old age at the cellular level, while rFE appears to be unchanged; thus, previously reported age-related modification of rFE occurs upstream from the cellular level.

老年时,残余力的增强没有改变,而力的抑制在细胞水平上被放大。
残余力增强(rFE)和残余力抑制(rFD)是肌肉的历史相关特性,分别指在延长或缩短收缩后增加和减少等距力。当在关节水平评估时,老年人对力的历史依赖性比年轻人更大。然而,尚不清楚老年时这种力的历史依赖性的放大是由于细胞机制还是由于与年龄相关的肌肉结构重塑的结果。解剖f3440大鼠大腰肌单根肌纤维,进行化学渗透。单个肌肉纤维安装在力传感器和长度控制器之间,然后最大限度地激活(pCa 4.5)。为了评估rFD,在慢速(0.15Lo/s)和快速(0.6Lo/s)下,纤维主动从3.1缩短到2.5µm,固定端等距参考收缩为2.5µm。为了评估rFE,在肌节长度为2.2至2.5µm和2.7至3.0µm时,以0.3Lo/s的速度激活和拉伸纤维,并将其与固定端等距参考收缩分别在2.5和3.0µm时进行比较。老年人的等长力(2.5µm)比年轻人低约19% (p0.05)。老年人rFD比年轻人高约33% (p0.05)。在细胞水平上,rFD在老年时被放大,而rFE似乎不变,因此先前报道的年龄相关的rFE修饰发生在细胞水平的上游。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.50
自引率
10.70%
发文量
494
审稿时长
1 months
期刊介绍: Journal of Experimental Biology is the leading primary research journal in comparative physiology and publishes papers on the form and function of living organisms at all levels of biological organisation, from the molecular and subcellular to the integrated whole animal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信