An Efficient Strength Evaluation Method Based on Shell-Fastener Model for Large Hybrid Joint Structures of C/SiC Composites.

IF 3.1 3区 材料科学 Q3 CHEMISTRY, PHYSICAL
Materials Pub Date : 2024-12-08 DOI:10.3390/ma17236008
Maoqing Fu, Jiapeng Chen, Ben Wang, Biao Wang
{"title":"An Efficient Strength Evaluation Method Based on Shell-Fastener Model for Large Hybrid Joint Structures of C/SiC Composites.","authors":"Maoqing Fu, Jiapeng Chen, Ben Wang, Biao Wang","doi":"10.3390/ma17236008","DOIUrl":null,"url":null,"abstract":"<p><p>C/SiC composites are widely used in aerospace thermal structures. Due to the high manufacturing complexity and cost of C/SiC composites, numerous hybrid joints are required to replace large and complex components. The intricate contact behavior within these hybrid joints reduces the computational efficiency of damage analysis methods based on solid models, limiting their effectiveness in large-scale structural design. According to the structure characteristic, a fractal contact stiffness model considering bonded behaviors is established in this paper. By introducing this model, it is proved that the bonded layer can affect the interface strength between plates but not the bearing strength of the specimen for the bolt/bonded hybrid joint structure. Furthermore, by introducing the strength envelope method, this paper overcomes the problem wherein the shell-fastener model cannot accurately describe the complex stress field. Validation through experimental comparison confirms that this approach can accurately predict both the failure mode and strength of multi-row hybrid joint structures in C/SiC composites at a detailed level with an error of 5.4%, including the shear failure of bolts. This method offers a robust foundation for the design of large-scale C/SiC composite structures.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"17 23","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11643088/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma17236008","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

C/SiC composites are widely used in aerospace thermal structures. Due to the high manufacturing complexity and cost of C/SiC composites, numerous hybrid joints are required to replace large and complex components. The intricate contact behavior within these hybrid joints reduces the computational efficiency of damage analysis methods based on solid models, limiting their effectiveness in large-scale structural design. According to the structure characteristic, a fractal contact stiffness model considering bonded behaviors is established in this paper. By introducing this model, it is proved that the bonded layer can affect the interface strength between plates but not the bearing strength of the specimen for the bolt/bonded hybrid joint structure. Furthermore, by introducing the strength envelope method, this paper overcomes the problem wherein the shell-fastener model cannot accurately describe the complex stress field. Validation through experimental comparison confirms that this approach can accurately predict both the failure mode and strength of multi-row hybrid joint structures in C/SiC composites at a detailed level with an error of 5.4%, including the shear failure of bolts. This method offers a robust foundation for the design of large-scale C/SiC composite structures.

C/SiC 复合材料广泛应用于航空热结构。由于 C/SiC 复合材料的制造复杂性高、成本高,因此需要大量混合接头来替代大型复杂部件。这些混合接头内错综复杂的接触行为降低了基于实体模型的损伤分析方法的计算效率,限制了其在大规模结构设计中的有效性。本文根据结构特点,建立了考虑粘接行为的分形接触刚度模型。通过引入该模型,证明了对于螺栓/粘结混合连接结构,粘结层会影响板间的界面强度,但不会影响试件的承载强度。此外,通过引入强度包络法,本文克服了壳-紧固件模型无法准确描述复杂应力场的问题。通过实验对比验证,该方法可以准确预测 C/SiC 复合材料多排混合连接结构的失效模式和强度,误差仅为 5.4%,包括螺栓的剪切失效。该方法为大型 C/SiC 复合材料结构的设计奠定了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials
Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
5.80
自引率
14.70%
发文量
7753
审稿时长
1.2 months
期刊介绍: Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信