{"title":"Multi-Resonant Full-Solar-Spectrum Perfect Metamaterial Absorber.","authors":"Zhe Shen, Junfan Ni","doi":"10.3390/nano14231959","DOIUrl":null,"url":null,"abstract":"<p><p>Currently, perfect absorption properties of metamaterials have attracted widespread interest in the area of solar energy. Ultra-broadband absorption, incidence angle insensitivity, and polarization independence are key performance indicators in the design of the absorbers. In this work, we proposed a metamaterial absorber based on the absorption mechanism with multiple resonances, including propagation surface plasmon resonance (PSPR), localized surface plasmon resonance (LSPR), electric dipole resonance (EDR), and magnetic dipole resonance (MDR). The absorber, consisting of composite nanocylinders and a microcavity, can perform solar energy full-spectrum absorption. The proposed absorber obtained high absorption (>95%) from 272 nm to 2742 nm at normal incidence. The weighted absorption rate of the absorber at air mass 1.5 direct in the wavelength range of 280 nm to 3000 nm exceeds 98.5%. The ultra-broadband perfect absorption can be ascribed to the interaction of those resonances. The photothermal conversion efficiency of the absorber reaches 85.3% at 375 K. By analyzing the influence of the structural parameters on the absorption efficiency, the absorber exhibits excellent fault tolerance. In addition, the designed absorber is insensitive to polarization and variation in ambient refractive index and has an absorption rate of more than 80% at the incident angle of 50°. Our proposed absorber has great application potential in solar energy collection, photothermal conversion, and other related areas.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 23","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14231959","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Currently, perfect absorption properties of metamaterials have attracted widespread interest in the area of solar energy. Ultra-broadband absorption, incidence angle insensitivity, and polarization independence are key performance indicators in the design of the absorbers. In this work, we proposed a metamaterial absorber based on the absorption mechanism with multiple resonances, including propagation surface plasmon resonance (PSPR), localized surface plasmon resonance (LSPR), electric dipole resonance (EDR), and magnetic dipole resonance (MDR). The absorber, consisting of composite nanocylinders and a microcavity, can perform solar energy full-spectrum absorption. The proposed absorber obtained high absorption (>95%) from 272 nm to 2742 nm at normal incidence. The weighted absorption rate of the absorber at air mass 1.5 direct in the wavelength range of 280 nm to 3000 nm exceeds 98.5%. The ultra-broadband perfect absorption can be ascribed to the interaction of those resonances. The photothermal conversion efficiency of the absorber reaches 85.3% at 375 K. By analyzing the influence of the structural parameters on the absorption efficiency, the absorber exhibits excellent fault tolerance. In addition, the designed absorber is insensitive to polarization and variation in ambient refractive index and has an absorption rate of more than 80% at the incident angle of 50°. Our proposed absorber has great application potential in solar energy collection, photothermal conversion, and other related areas.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.