Mila Milenkovic, Warda Saeed, Muhammad Yasir, Dusan Milivojevic, Ali Azmy, Kamal E S Nassar, Zois Syrgiannis, Ioannis Spanopoulos, Danica Bajuk-Bogdanovic, Snežana Maletić, Djurdja Kerkez, Tanja Barudžija, Svetlana Jovanović
{"title":"Carbonized Apples and Quinces Stillage for Electromagnetic Shielding.","authors":"Mila Milenkovic, Warda Saeed, Muhammad Yasir, Dusan Milivojevic, Ali Azmy, Kamal E S Nassar, Zois Syrgiannis, Ioannis Spanopoulos, Danica Bajuk-Bogdanovic, Snežana Maletić, Djurdja Kerkez, Tanja Barudžija, Svetlana Jovanović","doi":"10.3390/nano14231882","DOIUrl":null,"url":null,"abstract":"<p><p>Electromagnetic waves (EMWs) have become an integral part of our daily lives, but they are causing a new form of environmental pollution, manifesting as electromagnetic interference (EMI) and radio frequency signal leakage. As a result, the demand for innovative, eco-friendly materials capable of blocking EMWs has escalated in the past decade, underscoring the significance of our research. In the realm of modern science, the creation of new materials must consider the starting materials, production costs, energy usage, and the potential for air, water, and soil pollution. Herein, we utilized biowaste materials generated during the distillation of fruit schnapps. The biowaste from apple and quince schnapps distillation was used as starting material, mixed with KOH, and carbonized at 850 °C, in a nitrogen atmosphere. The structure of samples was investigated using various techniques (infrared, Raman, energy-dispersive X-ray, X-ray photoelectron spectroscopies, thermogravimetric analysis, BET surface area analyzer). Encouragingly, these materials demonstrated the ability to block EMWs within a frequency range of 8 to 12 GHz. Shielding efficiency was measured using waveguide adapters connected to ports (1 and 2) of the vector network analyzer using radio-frequency coaxial cables. At a frequency of 10 GHz, carbonized biowaste blocks 78.5% of the incident electromagnetic wave.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 23","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14231882","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Electromagnetic waves (EMWs) have become an integral part of our daily lives, but they are causing a new form of environmental pollution, manifesting as electromagnetic interference (EMI) and radio frequency signal leakage. As a result, the demand for innovative, eco-friendly materials capable of blocking EMWs has escalated in the past decade, underscoring the significance of our research. In the realm of modern science, the creation of new materials must consider the starting materials, production costs, energy usage, and the potential for air, water, and soil pollution. Herein, we utilized biowaste materials generated during the distillation of fruit schnapps. The biowaste from apple and quince schnapps distillation was used as starting material, mixed with KOH, and carbonized at 850 °C, in a nitrogen atmosphere. The structure of samples was investigated using various techniques (infrared, Raman, energy-dispersive X-ray, X-ray photoelectron spectroscopies, thermogravimetric analysis, BET surface area analyzer). Encouragingly, these materials demonstrated the ability to block EMWs within a frequency range of 8 to 12 GHz. Shielding efficiency was measured using waveguide adapters connected to ports (1 and 2) of the vector network analyzer using radio-frequency coaxial cables. At a frequency of 10 GHz, carbonized biowaste blocks 78.5% of the incident electromagnetic wave.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.