Argyri Drymiskianaki, Zacharias Viskadourakis, George Kenanakis
{"title":"Hybrid Microwave/Solar Energy Harvesting System Using 3D-Printed Metasurfaces.","authors":"Argyri Drymiskianaki, Zacharias Viskadourakis, George Kenanakis","doi":"10.3390/ma17235969","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, a hybrid energy harvesting system based on a conventional solar cell combined with 3D-printed metasurface units is studied. Millimeter-scale metasurface units were fabricated via the stereolithography technique, and then they were covered with conductive silver paint, in order to achieve high electric conductivity. The performance of single, as well as two-unit metasurface harvesters, was thoroughly investigated. It was found that both of them produced voltage, which peaks at their resonance frequency, demonstrating efficient energy harvesting behavior in the microwave regime. Then, the metasurface units were connected with a commercially available photovoltaic panel and the performance of the hybrid system was examined under different environmental conditions, modifying the light intensity (i.e., light, dark and shadow). It was shown that the proposed hybrid harvesting system produces a sizable voltage output, which persists, even in the case when one of the components does not contribute. Furthermore, the performance of the hybrid harvester is found to be adequate enough, although optimization of the harvesting circuit is required in order to achieve high efficiency levels. All in all, the presented experimental evidence clearly indicates the realization of a rather promising hybrid energy harvesting system, exploiting two distinct ambient energy sources, namely light and microwaves.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"17 23","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11643723/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma17235969","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, a hybrid energy harvesting system based on a conventional solar cell combined with 3D-printed metasurface units is studied. Millimeter-scale metasurface units were fabricated via the stereolithography technique, and then they were covered with conductive silver paint, in order to achieve high electric conductivity. The performance of single, as well as two-unit metasurface harvesters, was thoroughly investigated. It was found that both of them produced voltage, which peaks at their resonance frequency, demonstrating efficient energy harvesting behavior in the microwave regime. Then, the metasurface units were connected with a commercially available photovoltaic panel and the performance of the hybrid system was examined under different environmental conditions, modifying the light intensity (i.e., light, dark and shadow). It was shown that the proposed hybrid harvesting system produces a sizable voltage output, which persists, even in the case when one of the components does not contribute. Furthermore, the performance of the hybrid harvester is found to be adequate enough, although optimization of the harvesting circuit is required in order to achieve high efficiency levels. All in all, the presented experimental evidence clearly indicates the realization of a rather promising hybrid energy harvesting system, exploiting two distinct ambient energy sources, namely light and microwaves.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.