Application of a minimally invasive full-thickness autologous microcolumn skin harvesting device for donor site tissue collection and augmenting wound healing in a porcine wound model

IF 2.6 3区 医学 Q2 DERMATOLOGY
Stephen Smith, Brenda Curtis, Lisa Nicholson, Thomas Koshy, Tyler Max, Brian Prevish, Madeleine Goedegebuure, Gregory Manista, Joshua Tam
{"title":"Application of a minimally invasive full-thickness autologous microcolumn skin harvesting device for donor site tissue collection and augmenting wound healing in a porcine wound model","authors":"Stephen Smith,&nbsp;Brenda Curtis,&nbsp;Lisa Nicholson,&nbsp;Thomas Koshy,&nbsp;Tyler Max,&nbsp;Brian Prevish,&nbsp;Madeleine Goedegebuure,&nbsp;Gregory Manista,&nbsp;Joshua Tam","doi":"10.1111/iwj.70094","DOIUrl":null,"url":null,"abstract":"<p>Using a 6-week porcine full-thickness excisional wound grafting model, we evaluated the Autologous Regeneration of Tissue (ART®) System, a novel skin harvesting device designed to collect autologous full-thickness autologous microcolumns (FTAM) at 0.5 mm in diameter. The donor skin sites were harvested using the ART® System and compared to split-thickness skin grafts (STSGs). Recipient sites were divided into three treatment groups: FTAM, STSG and Untreated control. Comparing the FTAM donor sites to the STSG donor sites, we observed significantly faster re-epithelization by Day 4 (<i>p</i> &lt; 0.05), earlier adnexal structures and rete ridge formation by Week 3, and increased collagen and elastin content by Week 6. We also observed an increased rate of healing at the FTAM donor site whilst limiting donor site morbidity compared to traditional STSG donor sites. Time to recipient site closure was 2.4 weeks for STSG treated, 3.3 weeks for FTAM treated and 4.1 weeks for the Untreated control (<i>p</i> &lt; 0.05). The STSG and FTAM recipient sites reached complete re-epithelialization by Weeks 4 and 5, respectively which was significantly faster compared to the Untreated control. However, the FTAM recipient site received only 10% of the donor site tissue relative to the recipient site area and the amount of donor site tissue grafted on the STSG recipient sites was 5× more than the FTAM recipient sites. Additionally, the FTAMs harvested by the ART® System augmented recipient wound site healing as a result of ‘epithelial island’ expansion in contrast to Untreated control sites that closed primarily by contracture.</p>","PeriodicalId":14451,"journal":{"name":"International Wound Journal","volume":"21 12","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/iwj.70094","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Wound Journal","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/iwj.70094","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DERMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Using a 6-week porcine full-thickness excisional wound grafting model, we evaluated the Autologous Regeneration of Tissue (ART®) System, a novel skin harvesting device designed to collect autologous full-thickness autologous microcolumns (FTAM) at 0.5 mm in diameter. The donor skin sites were harvested using the ART® System and compared to split-thickness skin grafts (STSGs). Recipient sites were divided into three treatment groups: FTAM, STSG and Untreated control. Comparing the FTAM donor sites to the STSG donor sites, we observed significantly faster re-epithelization by Day 4 (p < 0.05), earlier adnexal structures and rete ridge formation by Week 3, and increased collagen and elastin content by Week 6. We also observed an increased rate of healing at the FTAM donor site whilst limiting donor site morbidity compared to traditional STSG donor sites. Time to recipient site closure was 2.4 weeks for STSG treated, 3.3 weeks for FTAM treated and 4.1 weeks for the Untreated control (p < 0.05). The STSG and FTAM recipient sites reached complete re-epithelialization by Weeks 4 and 5, respectively which was significantly faster compared to the Untreated control. However, the FTAM recipient site received only 10% of the donor site tissue relative to the recipient site area and the amount of donor site tissue grafted on the STSG recipient sites was 5× more than the FTAM recipient sites. Additionally, the FTAMs harvested by the ART® System augmented recipient wound site healing as a result of ‘epithelial island’ expansion in contrast to Untreated control sites that closed primarily by contracture.

Abstract Image

微创全层自体微柱皮肤采集装置在猪伤口模型供体组织收集和伤口愈合中的应用。
使用6周的猪全层切除伤口移植模型,我们评估了自体组织再生(ART®)系统,这是一种新型皮肤采集设备,旨在收集直径为0.5 mm的自体全层自体微柱(FTAM)。使用ART®系统采集供体皮肤,并与裂厚皮肤移植物(STSGs)进行比较。受体部位分为三个治疗组:FTAM、STSG和未经治疗的对照组。将FTAM供体部位与STSG供体部位进行比较,我们观察到在第4天明显更快的再上皮形成(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Wound Journal
International Wound Journal DERMATOLOGY-SURGERY
CiteScore
4.50
自引率
12.90%
发文量
266
审稿时长
6-12 weeks
期刊介绍: The Editors welcome papers on all aspects of prevention and treatment of wounds and associated conditions in the fields of surgery, dermatology, oncology, nursing, radiotherapy, physical therapy, occupational therapy and podiatry. The Journal accepts papers in the following categories: - Research papers - Review articles - Clinical studies - Letters - News and Views: international perspectives, education initiatives, guidelines and different activities of groups and societies. Calendar of events The Editors are supported by a board of international experts and a panel of reviewers across a range of disciplines and specialties which ensures only the most current and relevant research is published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信