{"title":"Evi1 governs Kdm6b-mediated histone demethylation to regulate the Laptm4b-driven mTOR pathway in hematopoietic progenitor cells.","authors":"Qiong Wu, Chunjie Yu, Fang Yu, Yiran Guo, Yue Sheng, Liping Li, Yafang Li, Yutao Zhang, Chao Hu, Jue Wang, Tong-Chuan He, Yong Huang, Hongyu Ni, Zhiguang Huo, Wenshu Wu, Gang Greg Wang, Jianxin Lyu, Zhijian Qian","doi":"10.1172/JCI173403","DOIUrl":null,"url":null,"abstract":"<p><p>Ecotropic viral integration site 1 (EVI1/MECOM) is frequently upregulated in myeloid malignancies. Here, we present an Evi1-transgenic mouse model with inducible expression in hematopoietic stem/progenitor cells (HSPCs). Upon induction of Evi1 expression, mice displayed anemia, thrombocytopenia, lymphopenia, and erythroid and megakaryocyte dysplasia with a significant expansion of committed myeloid progenitor cells, resembling human myelodysplastic syndrome/myeloproliferative neoplasm-like (MDS/MPN-like) disease. Evi1 overexpression prompted HSPCs to exit quiescence and accelerated their proliferation, leading to expansion of committed myeloid progenitors while inhibiting lymphopoiesis. Analysis of global gene expression and Evi1 binding site profiling in HSPCs revealed that Evi1 directly upregulated lysine demethylase 6b (Kdm6b). Subsequently, Kdm6b-mediated H3K27me3 demethylation resulted in activation of various genes, including Laptm4b. Interestingly, KDM6B and LAPTM4B are positively correlated with EVI1 expression in patients with MDS. The EVI1/KDM6B/H3K27me3/LAPTM4B signaling pathway was also identified in EVI1hi human leukemia cell lines. We found that hyperactivation of the LAPTM4B-driven mTOR pathway was crucial for the growth of EVI1hi leukemia cells. Knockdown of Laptm4b partially rescued Evi1-induced abnormal hematopoiesis in vivo. Thus, our study establishes a mouse model to investigate EVI1hi myeloid malignancies, demonstrating the significance of the EVI1-mediated KDM6B/H3K27me3/LAPTM4B signaling axis in their maintenance.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":"134 24","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11645144/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/JCI173403","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ecotropic viral integration site 1 (EVI1/MECOM) is frequently upregulated in myeloid malignancies. Here, we present an Evi1-transgenic mouse model with inducible expression in hematopoietic stem/progenitor cells (HSPCs). Upon induction of Evi1 expression, mice displayed anemia, thrombocytopenia, lymphopenia, and erythroid and megakaryocyte dysplasia with a significant expansion of committed myeloid progenitor cells, resembling human myelodysplastic syndrome/myeloproliferative neoplasm-like (MDS/MPN-like) disease. Evi1 overexpression prompted HSPCs to exit quiescence and accelerated their proliferation, leading to expansion of committed myeloid progenitors while inhibiting lymphopoiesis. Analysis of global gene expression and Evi1 binding site profiling in HSPCs revealed that Evi1 directly upregulated lysine demethylase 6b (Kdm6b). Subsequently, Kdm6b-mediated H3K27me3 demethylation resulted in activation of various genes, including Laptm4b. Interestingly, KDM6B and LAPTM4B are positively correlated with EVI1 expression in patients with MDS. The EVI1/KDM6B/H3K27me3/LAPTM4B signaling pathway was also identified in EVI1hi human leukemia cell lines. We found that hyperactivation of the LAPTM4B-driven mTOR pathway was crucial for the growth of EVI1hi leukemia cells. Knockdown of Laptm4b partially rescued Evi1-induced abnormal hematopoiesis in vivo. Thus, our study establishes a mouse model to investigate EVI1hi myeloid malignancies, demonstrating the significance of the EVI1-mediated KDM6B/H3K27me3/LAPTM4B signaling axis in their maintenance.
期刊介绍:
The Journal of Clinical Investigation, established in 1924 by the ASCI, is a prestigious publication that focuses on breakthroughs in basic and clinical biomedical science, with the goal of advancing the field of medicine. With an impressive Impact Factor of 15.9 in 2022, it is recognized as one of the leading journals in the "Medicine, Research & Experimental" category of the Web of Science.
The journal attracts a diverse readership from various medical disciplines and sectors. It publishes a wide range of research articles encompassing all biomedical specialties, including Autoimmunity, Gastroenterology, Immunology, Metabolism, Nephrology, Neuroscience, Oncology, Pulmonology, Vascular Biology, and many others.
The Editorial Board consists of esteemed academic editors who possess extensive expertise in their respective fields. They are actively involved in research, ensuring the journal's high standards of publication and scientific rigor.