The Probiotics Lacticaseibacillus paracasei, Lacticaseibacillus rhamnosus, and Limosilactobacillus fermentum Enhance Spermatozoa Motility Through Mitochondrial Function-Related Factors.

IF 5.6 2区 生物学
Eun Hye Lee, Yu Jin Kim, Il Seon Jung, Dae Keun Kim, Jae Ho Lee
{"title":"The Probiotics <i>Lacticaseibacillus paracasei</i>, <i>Lacticaseibacillus rhamnosus</i>, and <i>Limosilactobacillus fermentum</i> Enhance Spermatozoa Motility Through Mitochondrial Function-Related Factors.","authors":"Eun Hye Lee, Yu Jin Kim, Il Seon Jung, Dae Keun Kim, Jae Ho Lee","doi":"10.3390/ijms252313220","DOIUrl":null,"url":null,"abstract":"<p><p>Idiopathic male infertility is characterized by increased mortality or reduced motility and vitality of sperm. There are several reports on probiotics in the male reproductive tract, but the effects of these probiotics on sperm motility remain to be elucidated. In this study, we investigated the impact and mechanism of probiotics on the vitality and motility of mouse sperm. We collected mature sperm from the caudal vas deferens of mice and prepared three probiotics donated by HEM Pharma Inc.: <i>Lacticaseibacillus rhamnosus</i>, <i>Limosilactobacillus fermentum</i>, and <i>Lacticaseibacillus paracasei</i>. We analyzed the vitality and motility of sperm according to the concentration and duration of probiotic treatment. The probiotics increased the motility and vitality of sperm. Specifically, they enhanced sperm motility by 30-40% compared with untreated sperms. The probiotics enhanced mitochondrial activity in sperm through specific factors like AMPK and SIRT1. All three probiotics enhanced the activities of mitochondrial function-related proteins in sperm. In conclusion, we found that the probiotics improved the vitality and motility of mouse sperm and increased mitochondrial function in mature sperm. These findings suggest that probiotics can be utilized to enhance sperm motility and treat male infertility.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"25 23","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms252313220","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Idiopathic male infertility is characterized by increased mortality or reduced motility and vitality of sperm. There are several reports on probiotics in the male reproductive tract, but the effects of these probiotics on sperm motility remain to be elucidated. In this study, we investigated the impact and mechanism of probiotics on the vitality and motility of mouse sperm. We collected mature sperm from the caudal vas deferens of mice and prepared three probiotics donated by HEM Pharma Inc.: Lacticaseibacillus rhamnosus, Limosilactobacillus fermentum, and Lacticaseibacillus paracasei. We analyzed the vitality and motility of sperm according to the concentration and duration of probiotic treatment. The probiotics increased the motility and vitality of sperm. Specifically, they enhanced sperm motility by 30-40% compared with untreated sperms. The probiotics enhanced mitochondrial activity in sperm through specific factors like AMPK and SIRT1. All three probiotics enhanced the activities of mitochondrial function-related proteins in sperm. In conclusion, we found that the probiotics improved the vitality and motility of mouse sperm and increased mitochondrial function in mature sperm. These findings suggest that probiotics can be utilized to enhance sperm motility and treat male infertility.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
10.70%
发文量
13472
审稿时长
1.7 months
期刊介绍: The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信