Anastasia N Vaganova, Ilya S Zhukov, Taisiia S Shemiakova, Konstantin A Rozhkov, Lyubov S Alferova, Alena B Karaseva, Elena I Ermolenko, Raul R Gainetdinov
{"title":"Functional Analysis of TAAR1 Expression in the Intestine Wall and the Effect of Its Gene Knockout on the Gut Microbiota in Mice.","authors":"Anastasia N Vaganova, Ilya S Zhukov, Taisiia S Shemiakova, Konstantin A Rozhkov, Lyubov S Alferova, Alena B Karaseva, Elena I Ermolenko, Raul R Gainetdinov","doi":"10.3390/ijms252313216","DOIUrl":null,"url":null,"abstract":"<p><p>Currently, the TAAR1 receptor has been identified in various cell groups in the intestinal wall. It recognizes biogenic amine compounds like phenylethylamine or tyramine, which are products of decarboxylation of phenylalanine and tyrosine by endogenous or bacterial decarboxylases. Since several gut bacteria produce these amines, TAAR1 is suggested to be involved in the interaction between the host and gut microbiota. The purpose of this present study was to clarify the TAAR1 function in the intestinal wall and estimate the TAAR1 gene knockout effect on gut microbiota composition. By analyzing public transcriptomic data of the GEO repository, we identified TAAR1 expression in enterocytes, enteroendocrine cells, tuft cells, and myenteric neurons in mice. The analysis of genes co-expressed with TAAR1 in enteroendocrine cells allows us to suggest the TAAR1 involvement in enteroendocrine cell maturation. Also, in myenteric neurons, we identified the co-expression of TAAR1 with calbindin, which is specific for sensory neurons. The 16S rRNA gene-based analysis of fecal microbiota revealed a slight but significant impact of TAAR1 gene knockout in mice on the gut microbial community, which manifests in the higher diversity, accompanied by low between-sample variability and reorganization of the microbial co-occurrence network.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"25 23","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms252313216","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Currently, the TAAR1 receptor has been identified in various cell groups in the intestinal wall. It recognizes biogenic amine compounds like phenylethylamine or tyramine, which are products of decarboxylation of phenylalanine and tyrosine by endogenous or bacterial decarboxylases. Since several gut bacteria produce these amines, TAAR1 is suggested to be involved in the interaction between the host and gut microbiota. The purpose of this present study was to clarify the TAAR1 function in the intestinal wall and estimate the TAAR1 gene knockout effect on gut microbiota composition. By analyzing public transcriptomic data of the GEO repository, we identified TAAR1 expression in enterocytes, enteroendocrine cells, tuft cells, and myenteric neurons in mice. The analysis of genes co-expressed with TAAR1 in enteroendocrine cells allows us to suggest the TAAR1 involvement in enteroendocrine cell maturation. Also, in myenteric neurons, we identified the co-expression of TAAR1 with calbindin, which is specific for sensory neurons. The 16S rRNA gene-based analysis of fecal microbiota revealed a slight but significant impact of TAAR1 gene knockout in mice on the gut microbial community, which manifests in the higher diversity, accompanied by low between-sample variability and reorganization of the microbial co-occurrence network.
期刊介绍:
The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).