Metagenomic Analysis of the Buccal Microbiome by Nanopore Sequencing Reveals Structural Differences in the Microbiome of a Patient with Molar Incisor Hypomineralization (MIH) Compared to a Healthy Child-Case Study.
Wojciech Tynior, Małgorzata Kłósek, Silvia Salatino, Piotr Cuber, Dorota Hudy, Dariusz Nałęcz, Yuen-Ting Chan, Carla Gustave, Joanna Katarzyna Strzelczyk
{"title":"Metagenomic Analysis of the Buccal Microbiome by Nanopore Sequencing Reveals Structural Differences in the Microbiome of a Patient with Molar Incisor Hypomineralization (MIH) Compared to a Healthy Child-Case Study.","authors":"Wojciech Tynior, Małgorzata Kłósek, Silvia Salatino, Piotr Cuber, Dorota Hudy, Dariusz Nałęcz, Yuen-Ting Chan, Carla Gustave, Joanna Katarzyna Strzelczyk","doi":"10.3390/ijms252313143","DOIUrl":null,"url":null,"abstract":"<p><p>Molar incisor hypomineralization (MIH) is a qualitative developmental defect that affects the enamel tissue of permanent molars and can also occur in permanent incisors. Enamel affected by MIH has reduced hardness, increased porosity, and a higher organic content than unaffected enamel. These characteristics predispose the enamel to accumulation of bacteria and a higher prevalence of caries lesions. Through a groundbreaking metagenomic analysis of the buccal mucosal sample from a patient with MIH, we explored the intricacies of its microbiome compared to a healthy control using state-of-the-art nanopore long-read sequencing. Out of the 210 bacterial taxa identified in the MIH microbiome, we found <i>Streptococcus</i> and <i>Haemophilus</i> to be the most abundant genera. The bacteria with the highest read counts in the patient with MIH included <i>Streptococcus mitis</i>, <i>Haemophilus parainfluenzae</i>, <i>Streptococcus pneumoniae</i>, <i>Rothia dentocariosa</i>, and <i>Gemella haemolysans</i>. Our results revealed a striking contrast between healthy and MIH affected children, with a higher dominance and number of pathogenic species (<i>S. pneumoniae</i>, <i>H. influenzae</i>, and <i>N. meningitidis</i>) and reduced diversity in the MIH-affected patient. This distinct microbial profile not only sheds light on MIH-affected patients, but paves the way for future research, inspiring deeper understanding and larger scale studies.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"25 23","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms252313143","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Molar incisor hypomineralization (MIH) is a qualitative developmental defect that affects the enamel tissue of permanent molars and can also occur in permanent incisors. Enamel affected by MIH has reduced hardness, increased porosity, and a higher organic content than unaffected enamel. These characteristics predispose the enamel to accumulation of bacteria and a higher prevalence of caries lesions. Through a groundbreaking metagenomic analysis of the buccal mucosal sample from a patient with MIH, we explored the intricacies of its microbiome compared to a healthy control using state-of-the-art nanopore long-read sequencing. Out of the 210 bacterial taxa identified in the MIH microbiome, we found Streptococcus and Haemophilus to be the most abundant genera. The bacteria with the highest read counts in the patient with MIH included Streptococcus mitis, Haemophilus parainfluenzae, Streptococcus pneumoniae, Rothia dentocariosa, and Gemella haemolysans. Our results revealed a striking contrast between healthy and MIH affected children, with a higher dominance and number of pathogenic species (S. pneumoniae, H. influenzae, and N. meningitidis) and reduced diversity in the MIH-affected patient. This distinct microbial profile not only sheds light on MIH-affected patients, but paves the way for future research, inspiring deeper understanding and larger scale studies.
期刊介绍:
The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).