{"title":"High-Performance Advanced Composites in Multifunctional Material Design: State of the Art, Challenges, and Future Directions.","authors":"Sónia Simões","doi":"10.3390/ma17235997","DOIUrl":null,"url":null,"abstract":"<p><p>This review examines high-performance advanced composites (HPACs) for lightweight, high-strength, and multi-functional applications. Fiber-reinforced composites, particularly those utilizing carbon, glass, aramid, and nanofibers, are highlighted for their exceptional mechanical, thermal, and environmental properties. These materials enable diverse applications, including in the aerospace, automotive, energy, and defense sectors. In extreme conditions, matrix materials-polymers, metals, and ceramics-and advanced reinforcement materials must be carefully chosen to optimize performance and durability. Significant advancements in manufacturing techniques, such as automated and additive methods, have improved precision, reduced waste, and created highly customized and complex structures. Multifunctional composites integrating structural properties with energy storage and sensing capabilities are emerging as a breakthrough aligned with the trend toward smart material systems. Despite these advances, challenges such as recyclability, scalability, cost, and robust quality assurance remain. Addressing these issues will require the development of sustainable and bio-based composites, alongside efficient recycling solutions, to minimize their environmental impact and ensure long-term technological viability. The development of hybrid composites and nanocomposites to achieve multifunctionality while maintaining structural integrity will also be described.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"17 23","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11643371/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma17235997","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This review examines high-performance advanced composites (HPACs) for lightweight, high-strength, and multi-functional applications. Fiber-reinforced composites, particularly those utilizing carbon, glass, aramid, and nanofibers, are highlighted for their exceptional mechanical, thermal, and environmental properties. These materials enable diverse applications, including in the aerospace, automotive, energy, and defense sectors. In extreme conditions, matrix materials-polymers, metals, and ceramics-and advanced reinforcement materials must be carefully chosen to optimize performance and durability. Significant advancements in manufacturing techniques, such as automated and additive methods, have improved precision, reduced waste, and created highly customized and complex structures. Multifunctional composites integrating structural properties with energy storage and sensing capabilities are emerging as a breakthrough aligned with the trend toward smart material systems. Despite these advances, challenges such as recyclability, scalability, cost, and robust quality assurance remain. Addressing these issues will require the development of sustainable and bio-based composites, alongside efficient recycling solutions, to minimize their environmental impact and ensure long-term technological viability. The development of hybrid composites and nanocomposites to achieve multifunctionality while maintaining structural integrity will also be described.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.