Integrated Transcriptomic and Proteomic Analyses of Antler Growth and Ossification Mechanisms.

IF 5.6 2区 生物学
Ruijia Liu, Pan Zhang, Jiade Bai, Zhenyu Zhong, Yunfang Shan, Zhibin Cheng, Qingxun Zhang, Qingyun Guo, Hao Zhang, Bo Zhang
{"title":"Integrated Transcriptomic and Proteomic Analyses of Antler Growth and Ossification Mechanisms.","authors":"Ruijia Liu, Pan Zhang, Jiade Bai, Zhenyu Zhong, Yunfang Shan, Zhibin Cheng, Qingxun Zhang, Qingyun Guo, Hao Zhang, Bo Zhang","doi":"10.3390/ijms252313215","DOIUrl":null,"url":null,"abstract":"<p><p>Antlers are the sole mammalian organs capable of continuous regeneration. This distinctive feature has evolved into various biomedical models. Research on mechanisms of antler growth, development, and ossification provides valuable insights for limb regeneration, cartilage-related diseases, and cancer mechanisms. Here, ribonucleic acid sequencing (RNA-seq) and four-dimensional data-independent acquisition (4D DIA) technologies were employed to examine gene and protein expression differences among four tissue layers of the Chinese milu deer antler: reserve mesenchyme (RM), precartilage (PC), transition zone (TZ), cartilage (CA). Overall, 4611 differentially expressed genes (DEGs) and 2388 differentially expressed proteins (DEPs) were identified in the transcriptome and proteome, respectively. Among the 828 DEGs common to both omics approaches, genes from the collagen, integrin, and solute carrier families, and signaling molecules were emphasized for their roles in the regulation of antler growth, development, and ossification. Bioinformatics analysis revealed that in addition to being regulated by vascular and nerve regeneration pathways, antler growth and development are significantly influenced by numerous cancer-related signaling pathways. This indicates that antler growth mechanisms may be similar to those of cancer cell proliferation and development. This study lays a foundation for future research on the mechanisms underlying the rapid growth and ossification of antlers.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"25 23","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms252313215","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Antlers are the sole mammalian organs capable of continuous regeneration. This distinctive feature has evolved into various biomedical models. Research on mechanisms of antler growth, development, and ossification provides valuable insights for limb regeneration, cartilage-related diseases, and cancer mechanisms. Here, ribonucleic acid sequencing (RNA-seq) and four-dimensional data-independent acquisition (4D DIA) technologies were employed to examine gene and protein expression differences among four tissue layers of the Chinese milu deer antler: reserve mesenchyme (RM), precartilage (PC), transition zone (TZ), cartilage (CA). Overall, 4611 differentially expressed genes (DEGs) and 2388 differentially expressed proteins (DEPs) were identified in the transcriptome and proteome, respectively. Among the 828 DEGs common to both omics approaches, genes from the collagen, integrin, and solute carrier families, and signaling molecules were emphasized for their roles in the regulation of antler growth, development, and ossification. Bioinformatics analysis revealed that in addition to being regulated by vascular and nerve regeneration pathways, antler growth and development are significantly influenced by numerous cancer-related signaling pathways. This indicates that antler growth mechanisms may be similar to those of cancer cell proliferation and development. This study lays a foundation for future research on the mechanisms underlying the rapid growth and ossification of antlers.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
10.70%
发文量
13472
审稿时长
1.7 months
期刊介绍: The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信