Biochip-Based Identification of Mycobacterial Species in Russia.

IF 5.6 2区 生物学
Danila Zimenkov, Vyacheslav Zhuravlev, Anastasia Ushtanit, Marina Filippova, Uliana Semenova, Natalia Solovieva, Maria Sviridenko, Anastasia Khakhalina, Svetlana Safonova, Marina Makarova, Elizaveta Gordeeva, Elena Guselnikova, Yakov Schwartz, Natalia Stavitskaya, Peter Yablonsky
{"title":"Biochip-Based Identification of Mycobacterial Species in Russia.","authors":"Danila Zimenkov, Vyacheslav Zhuravlev, Anastasia Ushtanit, Marina Filippova, Uliana Semenova, Natalia Solovieva, Maria Sviridenko, Anastasia Khakhalina, Svetlana Safonova, Marina Makarova, Elizaveta Gordeeva, Elena Guselnikova, Yakov Schwartz, Natalia Stavitskaya, Peter Yablonsky","doi":"10.3390/ijms252313200","DOIUrl":null,"url":null,"abstract":"<p><p>Infections caused by nontuberculous mycobacteria (NTM) are rising globally throughout the world. The number of species isolated from clinical samples is steadily growing, which demands the implementation of a robust diagnostic method with wide specificity. This study was carried out in in 2022-2024 in three clinical antituberculosis centers in the biggest cities of Russia: Moscow, Saint Petersburg, and Novosibirsk. We developed the DNA hybridization assay 'Myco-biochip' that allows the identification of 79 mycobacterial species and analyzed 3119 samples from 2221 patients. Sixty-eight mycobacterial species were identified in clinics, including the three novel species phylogenetically related to <i>M. duvalii</i>, <i>M. lentiflavum</i>, and <i>M. talmoniae</i>. The identification of a close relative of <i>M. talmoniae</i> adds to the existence of separate clade between <i>M. terrae</i>, <i>M. triviale</i> complexes and other slow-growing <i>Mycobacteria</i>, which supports the thesis against the splitting of <i>Mycobacteria</i> into five separate genera. Adding to the list of potentially pathogenic species, we identified <i>M. adipatum</i> and <i>M. terramassiliense</i>, which were previously described as natural habitats. The diversity of acid-fast bacilli identified in TB-suspected persons was not limited to the <i>Mycobacteria</i> genus and also includes species from genera <i>Nocardia</i>, <i>Gordonia</i>, <i>Corynebacterium</i>, <i>Tsukamurella</i>, and <i>Rhodococcus</i> of the order <i>Mycobacteriales</i>. The revealed bacterial diversity in patients with suspected NTM-diseases requires the implementation of relevant species identification assays as the first step in the laboratory diagnostic pipeline.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"25 23","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms252313200","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Infections caused by nontuberculous mycobacteria (NTM) are rising globally throughout the world. The number of species isolated from clinical samples is steadily growing, which demands the implementation of a robust diagnostic method with wide specificity. This study was carried out in in 2022-2024 in three clinical antituberculosis centers in the biggest cities of Russia: Moscow, Saint Petersburg, and Novosibirsk. We developed the DNA hybridization assay 'Myco-biochip' that allows the identification of 79 mycobacterial species and analyzed 3119 samples from 2221 patients. Sixty-eight mycobacterial species were identified in clinics, including the three novel species phylogenetically related to M. duvalii, M. lentiflavum, and M. talmoniae. The identification of a close relative of M. talmoniae adds to the existence of separate clade between M. terrae, M. triviale complexes and other slow-growing Mycobacteria, which supports the thesis against the splitting of Mycobacteria into five separate genera. Adding to the list of potentially pathogenic species, we identified M. adipatum and M. terramassiliense, which were previously described as natural habitats. The diversity of acid-fast bacilli identified in TB-suspected persons was not limited to the Mycobacteria genus and also includes species from genera Nocardia, Gordonia, Corynebacterium, Tsukamurella, and Rhodococcus of the order Mycobacteriales. The revealed bacterial diversity in patients with suspected NTM-diseases requires the implementation of relevant species identification assays as the first step in the laboratory diagnostic pipeline.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
10.70%
发文量
13472
审稿时长
1.7 months
期刊介绍: The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信