Oula Mansour, Artem V Fadeev, Alexander A Perederiy, Daria M Danilenko, Dmitry A Lioznov, Andrey B Komissarov
{"title":"Development of Primer Panels for Amplicon Sequencing of Human Parainfluenza Viruses Type 1 and 2.","authors":"Oula Mansour, Artem V Fadeev, Alexander A Perederiy, Daria M Danilenko, Dmitry A Lioznov, Andrey B Komissarov","doi":"10.3390/ijms252313119","DOIUrl":null,"url":null,"abstract":"<p><p>Human parainfluenza viruses (hPIVs) are major contributors to respiratory tract infections in young children worldwide. Despite their global significance, genomic surveillance of hPIV1 and hPIV2 had not previously been conducted in Russia. This study aimed to develop a robust amplicon-based sequencing protocol for these viruses. The designed primer sets were tested on clinical samples containing hPIV RNA to evaluate their performance and efficiency. Sequencing results demonstrated high-quality genome data and efficient amplification across various Ct values. As a result, 41 hPIV1 and 13 hPIV2 near-complete genome sequences were successfully obtained from clinical specimens collected in Saint Petersburg (Russia). Phylogenetic analysis of the HN gene sequences showed that Russian hPIV1 strains clustered into clades II and III, while hPIV2 strains were distributed between clusters G1a and G3. The whole-genome-based trees confirmed the same distribution of the strains. These findings highlight the potential of our primer panels and contribute to a better understanding of the molecular characteristics and phylogenetic diversity of circulating hPIV strains. Notably, this study presents the first evolutionary analysis of hPIVs in Russia.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"25 23","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms252313119","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Human parainfluenza viruses (hPIVs) are major contributors to respiratory tract infections in young children worldwide. Despite their global significance, genomic surveillance of hPIV1 and hPIV2 had not previously been conducted in Russia. This study aimed to develop a robust amplicon-based sequencing protocol for these viruses. The designed primer sets were tested on clinical samples containing hPIV RNA to evaluate their performance and efficiency. Sequencing results demonstrated high-quality genome data and efficient amplification across various Ct values. As a result, 41 hPIV1 and 13 hPIV2 near-complete genome sequences were successfully obtained from clinical specimens collected in Saint Petersburg (Russia). Phylogenetic analysis of the HN gene sequences showed that Russian hPIV1 strains clustered into clades II and III, while hPIV2 strains were distributed between clusters G1a and G3. The whole-genome-based trees confirmed the same distribution of the strains. These findings highlight the potential of our primer panels and contribute to a better understanding of the molecular characteristics and phylogenetic diversity of circulating hPIV strains. Notably, this study presents the first evolutionary analysis of hPIVs in Russia.
期刊介绍:
The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).