{"title":"Optimization of Instant Beverage Powder Containing Propolis Extract Nanoliposomes.","authors":"Mehdi Mirzazadeh, Hadiseh Bagheri, Fatemeh Rasi, Nasim Mirzazadeh, Zahra Alam, Sahar Akhavan-Mahdavi","doi":"10.1155/ijfo/9099501","DOIUrl":null,"url":null,"abstract":"<p><p>Propolis is a natural resinous complex mixture produced by honeybees that contain various bioactive compounds. However, these bioactive compounds are chemically unstable and their absorption in the gastrointestinal tract is influenced by their solubility and stability. Encapsulation technology has been employed to increase their bioavailability and protect them against hostile conditions. Nanoliposomes are nanoscale lipid-based vesicles that can encapsulate various bioactive compounds, including propolis extracts. Therefore, in this study, propolis extract was encapsulated by nanoliposome technique and used in instant drink formulation. Nanoliposome characterization was done regarding particle size (255 ± 0.21 nm), zeta potential (-37.6 ± 1.14 mV), and encapsulation efficiency (73.71 ± 0.94). Response surface methodology (RSM) was employed to determine the effect of nanoliposome concentration (0%-5%) on the beverage characteristics including Brix, acidity, hygroscopicity, water solubility index, total phenol content, total microbial count, and sensory analyses. RSM predicted that a 3.19% nanoliposome would provide the overall optimum region for preparing the beverage with the best characteristics. Therefore, nanoliposome containing propolis can be successfully used in the enrichment of the beverage formulation by maintaining the sensory characteristics and improving its quality.</p>","PeriodicalId":14125,"journal":{"name":"International Journal of Food Science","volume":"2024 ","pages":"9099501"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11649347/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Food Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/ijfo/9099501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Propolis is a natural resinous complex mixture produced by honeybees that contain various bioactive compounds. However, these bioactive compounds are chemically unstable and their absorption in the gastrointestinal tract is influenced by their solubility and stability. Encapsulation technology has been employed to increase their bioavailability and protect them against hostile conditions. Nanoliposomes are nanoscale lipid-based vesicles that can encapsulate various bioactive compounds, including propolis extracts. Therefore, in this study, propolis extract was encapsulated by nanoliposome technique and used in instant drink formulation. Nanoliposome characterization was done regarding particle size (255 ± 0.21 nm), zeta potential (-37.6 ± 1.14 mV), and encapsulation efficiency (73.71 ± 0.94). Response surface methodology (RSM) was employed to determine the effect of nanoliposome concentration (0%-5%) on the beverage characteristics including Brix, acidity, hygroscopicity, water solubility index, total phenol content, total microbial count, and sensory analyses. RSM predicted that a 3.19% nanoliposome would provide the overall optimum region for preparing the beverage with the best characteristics. Therefore, nanoliposome containing propolis can be successfully used in the enrichment of the beverage formulation by maintaining the sensory characteristics and improving its quality.
期刊介绍:
International Journal of Food Science is a peer-reviewed, Open Access journal that publishes research and review articles in all areas of food science. As a multidisciplinary journal, articles discussing all aspects of food science will be considered, including, but not limited to: enhancing shelf life, food deterioration, food engineering, food handling, food processing, food quality, food safety, microbiology, and nutritional research. The journal aims to provide a valuable resource for food scientists, food producers, food retailers, nutritionists, the public health sector, and relevant governmental and non-governmental agencies.