Exploring TAS2R46 biomechanics through molecular dynamics and network analysis.

IF 3.9 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Frontiers in Molecular Biosciences Pub Date : 2024-12-02 eCollection Date: 2024-01-01 DOI:10.3389/fmolb.2024.1473675
Marco Cannariato, Riccardo Fanunza, Eric A Zizzi, Marcello Miceli, Giacomo Di Benedetto, Marco A Deriu, Lorenzo Pallante
{"title":"Exploring TAS2R46 biomechanics through molecular dynamics and network analysis.","authors":"Marco Cannariato, Riccardo Fanunza, Eric A Zizzi, Marcello Miceli, Giacomo Di Benedetto, Marco A Deriu, Lorenzo Pallante","doi":"10.3389/fmolb.2024.1473675","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the intricate interplay between structural features and signal-processing events is crucial for unravelling the mechanisms of biomolecular systems. G protein-coupled receptors (GPCRs), a pervasive protein family in humans, serve a wide spectrum of vital functions. TAS2Rs, a subfamily of GPCRs, play a primary role in recognizing bitter molecules and triggering events leading to the perception of bitterness, a crucial defence mechanism against spoiled or poisonous food. Beyond taste, TAS2Rs function is associated with many diseases as they are expressed in several extra-oral tissues. Given that the precise functioning mechanisms of TAS2R remain poorly understood, this study employed molecular dynamics simulations combined with network-based analysis to investigate local conformational changes and global structural correlations in different states of the receptor. The focus was on the human TAS2R46 bitter taste receptor, recently resolved experimentally, both in the presence and absence of strychnine, a known bitter agonist. The results showed that the ligand-bound state of the receptor exhibited more correlated dynamics compared to the apo state, and the presence of the agonist mediated the allosteric network between two helices (TM3 and TM6) which mainly convey the signal transferring from the extracellular to the intracellular region. By elucidating the hallmarks of the conformational changes and allosteric network of TAS2R46 under varying conditions, this study has enabled the identification of the unique structural and dynamics features of this receptor, thereby establishing a foundation for a more profound characterisation of this intriguing class of receptors.</p>","PeriodicalId":12465,"journal":{"name":"Frontiers in Molecular Biosciences","volume":"11 ","pages":"1473675"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11646861/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Molecular Biosciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmolb.2024.1473675","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the intricate interplay between structural features and signal-processing events is crucial for unravelling the mechanisms of biomolecular systems. G protein-coupled receptors (GPCRs), a pervasive protein family in humans, serve a wide spectrum of vital functions. TAS2Rs, a subfamily of GPCRs, play a primary role in recognizing bitter molecules and triggering events leading to the perception of bitterness, a crucial defence mechanism against spoiled or poisonous food. Beyond taste, TAS2Rs function is associated with many diseases as they are expressed in several extra-oral tissues. Given that the precise functioning mechanisms of TAS2R remain poorly understood, this study employed molecular dynamics simulations combined with network-based analysis to investigate local conformational changes and global structural correlations in different states of the receptor. The focus was on the human TAS2R46 bitter taste receptor, recently resolved experimentally, both in the presence and absence of strychnine, a known bitter agonist. The results showed that the ligand-bound state of the receptor exhibited more correlated dynamics compared to the apo state, and the presence of the agonist mediated the allosteric network between two helices (TM3 and TM6) which mainly convey the signal transferring from the extracellular to the intracellular region. By elucidating the hallmarks of the conformational changes and allosteric network of TAS2R46 under varying conditions, this study has enabled the identification of the unique structural and dynamics features of this receptor, thereby establishing a foundation for a more profound characterisation of this intriguing class of receptors.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Molecular Biosciences
Frontiers in Molecular Biosciences Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
7.20
自引率
4.00%
发文量
1361
审稿时长
14 weeks
期刊介绍: Much of contemporary investigation in the life sciences is devoted to the molecular-scale understanding of the relationships between genes and the environment — in particular, dynamic alterations in the levels, modifications, and interactions of cellular effectors, including proteins. Frontiers in Molecular Biosciences offers an international publication platform for basic as well as applied research; we encourage contributions spanning both established and emerging areas of biology. To this end, the journal draws from empirical disciplines such as structural biology, enzymology, biochemistry, and biophysics, capitalizing as well on the technological advancements that have enabled metabolomics and proteomics measurements in massively parallel throughput, and the development of robust and innovative computational biology strategies. We also recognize influences from medicine and technology, welcoming studies in molecular genetics, molecular diagnostics and therapeutics, and nanotechnology. Our ultimate objective is the comprehensive illustration of the molecular mechanisms regulating proteins, nucleic acids, carbohydrates, lipids, and small metabolites in organisms across all branches of life. In addition to interesting new findings, techniques, and applications, Frontiers in Molecular Biosciences will consider new testable hypotheses to inspire different perspectives and stimulate scientific dialogue. The integration of in silico, in vitro, and in vivo approaches will benefit endeavors across all domains of the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信