Microfluidic Chip-based Enrichment and Nucleic Acid Extraction for Quantitative Detection of Mycobacterium Smegmatis in Aerosols.

IF 2.3 3区 生物学 Q3 MICROBIOLOGY
Jie Cheng, Minhan Nie, Yiwei An, Zuanguang Chen, Yanli Tong
{"title":"Microfluidic Chip-based Enrichment and Nucleic Acid Extraction for Quantitative Detection of Mycobacterium Smegmatis in Aerosols.","authors":"Jie Cheng, Minhan Nie, Yiwei An, Zuanguang Chen, Yanli Tong","doi":"10.1007/s00284-024-04027-7","DOIUrl":null,"url":null,"abstract":"<p><p>Tuberculosis (TB) is ranked as the third most prevalent infectious disease globally. Early detection and treatment are crucial for effective management. Conventional diagnostic methods primarily rely on sputum samples, which present challenges in accessibility and have limited accuracy in certain populations such as children, individuals with HIV, and those with extrapulmonary TB. To address the need for point-of-care diagnostics, this study introduces a rapid diagnostic approach for TB using exhaled breath aerosol as a more easily obtainable specimen. Mycobacterium smegmatis, a non-pathogenic bacterium genetically similar to Mycobacterium tuberculosis, is used as a surrogate organism. The method involves the use of microfluidic chips for concentrating and electrolyzing mycobacteria in the aerosol, followed by extracting and quantifying nucleic acids using real-time fluorescence quantitative PCR. Notably, successful enrichment and quantification of bacterial content were achieved even at a minimal bacterial aerosol concentration of 10<sup>4</sup> CFU/mL. The developed chips are characterized by their cost-effectiveness, ease of use, high bacterial enrichment, efficient nucleic acid extraction, and low detection threshold (4.4 × 10<sup>-18</sup> mol/L). This innovative approach offers a promising method for early TB screening and opens avenues for the rapid identification of other aerosol-transmitted diseases.</p>","PeriodicalId":11360,"journal":{"name":"Current Microbiology","volume":"82 1","pages":"42"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00284-024-04027-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Tuberculosis (TB) is ranked as the third most prevalent infectious disease globally. Early detection and treatment are crucial for effective management. Conventional diagnostic methods primarily rely on sputum samples, which present challenges in accessibility and have limited accuracy in certain populations such as children, individuals with HIV, and those with extrapulmonary TB. To address the need for point-of-care diagnostics, this study introduces a rapid diagnostic approach for TB using exhaled breath aerosol as a more easily obtainable specimen. Mycobacterium smegmatis, a non-pathogenic bacterium genetically similar to Mycobacterium tuberculosis, is used as a surrogate organism. The method involves the use of microfluidic chips for concentrating and electrolyzing mycobacteria in the aerosol, followed by extracting and quantifying nucleic acids using real-time fluorescence quantitative PCR. Notably, successful enrichment and quantification of bacterial content were achieved even at a minimal bacterial aerosol concentration of 104 CFU/mL. The developed chips are characterized by their cost-effectiveness, ease of use, high bacterial enrichment, efficient nucleic acid extraction, and low detection threshold (4.4 × 10-18 mol/L). This innovative approach offers a promising method for early TB screening and opens avenues for the rapid identification of other aerosol-transmitted diseases.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Microbiology
Current Microbiology 生物-微生物学
CiteScore
4.80
自引率
3.80%
发文量
380
审稿时长
2.5 months
期刊介绍: Current Microbiology is a well-established journal that publishes articles in all aspects of microbial cells and the interactions between the microorganisms, their hosts and the environment. Current Microbiology publishes original research articles, short communications, reviews and letters to the editor, spanning the following areas: physiology, biochemistry, genetics, genomics, biotechnology, ecology, evolution, morphology, taxonomy, diagnostic methods, medical and clinical microbiology and immunology as applied to microorganisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信