Development of 3D Printable Silver Carp (Hypophthalmichthys molitrix) Surimi Gel with Dynamic High-Pressure Microfluidization-Modified Pea Protein Isolate and Microcrystalline Cellulose.
Xiaodan Liu, Qianyu Le, Yi Shi, Ying Yu, Jihao Zeng, Huiyun Chen, Jinhong Wu
{"title":"Development of 3D Printable Silver Carp (<i>Hypophthalmichthys molitrix</i>) Surimi Gel with Dynamic High-Pressure Microfluidization-Modified Pea Protein Isolate and Microcrystalline Cellulose.","authors":"Xiaodan Liu, Qianyu Le, Yi Shi, Ying Yu, Jihao Zeng, Huiyun Chen, Jinhong Wu","doi":"10.3390/foods13233966","DOIUrl":null,"url":null,"abstract":"<p><p>Sliver carp is a nutritious and abundant species in China, but its low market value stems from its thin meat, small bones and strong odor. Processing it into surimi enhances its economic value, though surimi typically has low gel strength and is prone to deterioration. Recently, three-dimensional (3D) printing has gained attention as an innovative additive manufacturing technique for personalization and process simplification requiring high-performance materials. This study intended to develop an optimized surimi formula for 3D printing with dynamic high-pressure microfluidization (DHPM)-modified pea protein isolate (PPI) and microcrystalline cellulose (MCC). Firstly, the effect of DHPM on PPI properties was evaluated, followed by the optimization of the surimi gel formula (72.093% water content, 3.203% PPI, 1.728% MCC, 1% salt, 1% collagen peptide and 20.976% sliver carp paste) and 3D printing parameters (2000 mm/min at 25 °C with a 1.5 mm nozzle). Rheological comparisons between the optimized surimi, surimi with commercial antifreeze and surimi with only PPI or MCC indicated that the optimized formulation exhibited clearer 3D printing outlines and reduced stickiness due to a higher recovery and lower loss modulus. These results demonstrated that DHPM-treated PPI and MCC enhanced the 3D printability of silver carp surimi gel, providing a new idea for a surimi product and supporting its potential applications in food 3D printing.</p>","PeriodicalId":12386,"journal":{"name":"Foods","volume":"13 23","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/foods13233966","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sliver carp is a nutritious and abundant species in China, but its low market value stems from its thin meat, small bones and strong odor. Processing it into surimi enhances its economic value, though surimi typically has low gel strength and is prone to deterioration. Recently, three-dimensional (3D) printing has gained attention as an innovative additive manufacturing technique for personalization and process simplification requiring high-performance materials. This study intended to develop an optimized surimi formula for 3D printing with dynamic high-pressure microfluidization (DHPM)-modified pea protein isolate (PPI) and microcrystalline cellulose (MCC). Firstly, the effect of DHPM on PPI properties was evaluated, followed by the optimization of the surimi gel formula (72.093% water content, 3.203% PPI, 1.728% MCC, 1% salt, 1% collagen peptide and 20.976% sliver carp paste) and 3D printing parameters (2000 mm/min at 25 °C with a 1.5 mm nozzle). Rheological comparisons between the optimized surimi, surimi with commercial antifreeze and surimi with only PPI or MCC indicated that the optimized formulation exhibited clearer 3D printing outlines and reduced stickiness due to a higher recovery and lower loss modulus. These results demonstrated that DHPM-treated PPI and MCC enhanced the 3D printability of silver carp surimi gel, providing a new idea for a surimi product and supporting its potential applications in food 3D printing.
期刊介绍:
Foods (ISSN 2304-8158) is an international, peer-reviewed scientific open access journal which provides an advanced forum for studies related to all aspects of food research. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists, researchers, and other food professionals to publish their experimental and theoretical results in as much detail as possible or share their knowledge with as much readers unlimitedly as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
manuscripts regarding research proposals and research ideas will be particularly welcomed
electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material
we also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds