Ines Pynket, Frederik Janssen, Jarne Van Gils, Christophe M Courtin, Arno G B Wouters
{"title":"Directing oat groat heat treatment conditions towards increased protein extractability.","authors":"Ines Pynket, Frederik Janssen, Jarne Van Gils, Christophe M Courtin, Arno G B Wouters","doi":"10.1016/j.crfs.2024.100932","DOIUrl":null,"url":null,"abstract":"<p><p>Oat-based liquid and semi-solid dairy alternatives require extractable proteins for nutritional and technological purposes. However, oats are industrially heat treated ('kilned') to inactivate endogenous lipases thereby avoiding rancidity development. Such heat treatment results in a protein extractability decrease. We here investigated the possibility of directing oat groat heat treatment conditions [oat groat moisture content (13.0-20.0%), heating temperature (80-100 °C) and heating time (15-45 min)] on a lab-scale to achieve complete enzyme inactivation, with peroxidase activity as a marker, while maintaining high protein extractability. Non-heat-treated and industrially heat-treated oats were included as reference samples. The peroxidase activity and protein extractability of lab-scale heat-treated oats decreased with an increase in moisture content, heating temperature and time. Several lab-scale heat-treated oats for which complete peroxidase inactivation was observed, had significantly higher protein extractabilities (31-59%) than industrially kilned oats (21%). The activity of endogenous lipases was determined for a selected sample set. Lipases required milder heat treatment conditions for complete inactivation than peroxidases. Such milder heat treatment led to samples with protein extractabilities between 31 and 65%. A notable observation was that heat treating oats (≥90 °C) caused clumping of the intracellular material of the aleurone cells, likely due to protein aggregation. The main conclusion of this study is that oat heat treatment conditions can be altered successfully to achieve complete enzyme inactivation while maintaining high protein extractability. The obtained insights could lead to the development of oat-based products with higher protein content and desired shelf stability.</p>","PeriodicalId":10939,"journal":{"name":"Current Research in Food Science","volume":"9 ","pages":"100932"},"PeriodicalIF":6.2000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11647645/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Food Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.crfs.2024.100932","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Oat-based liquid and semi-solid dairy alternatives require extractable proteins for nutritional and technological purposes. However, oats are industrially heat treated ('kilned') to inactivate endogenous lipases thereby avoiding rancidity development. Such heat treatment results in a protein extractability decrease. We here investigated the possibility of directing oat groat heat treatment conditions [oat groat moisture content (13.0-20.0%), heating temperature (80-100 °C) and heating time (15-45 min)] on a lab-scale to achieve complete enzyme inactivation, with peroxidase activity as a marker, while maintaining high protein extractability. Non-heat-treated and industrially heat-treated oats were included as reference samples. The peroxidase activity and protein extractability of lab-scale heat-treated oats decreased with an increase in moisture content, heating temperature and time. Several lab-scale heat-treated oats for which complete peroxidase inactivation was observed, had significantly higher protein extractabilities (31-59%) than industrially kilned oats (21%). The activity of endogenous lipases was determined for a selected sample set. Lipases required milder heat treatment conditions for complete inactivation than peroxidases. Such milder heat treatment led to samples with protein extractabilities between 31 and 65%. A notable observation was that heat treating oats (≥90 °C) caused clumping of the intracellular material of the aleurone cells, likely due to protein aggregation. The main conclusion of this study is that oat heat treatment conditions can be altered successfully to achieve complete enzyme inactivation while maintaining high protein extractability. The obtained insights could lead to the development of oat-based products with higher protein content and desired shelf stability.
期刊介绍:
Current Research in Food Science is an international peer-reviewed journal dedicated to advancing the breadth of knowledge in the field of food science. It serves as a platform for publishing original research articles and short communications that encompass a wide array of topics, including food chemistry, physics, microbiology, nutrition, nutraceuticals, process and package engineering, materials science, food sustainability, and food security. By covering these diverse areas, the journal aims to provide a comprehensive source of the latest scientific findings and technological advancements that are shaping the future of the food industry. The journal's scope is designed to address the multidisciplinary nature of food science, reflecting its commitment to promoting innovation and ensuring the safety and quality of the food supply.