Utility of Machine Learning Models to Predict Lymph Node Metastasis of Japanese Localized Prostate Cancer.

IF 4.5 2区 医学 Q1 ONCOLOGY
Cancers Pub Date : 2024-12-05 DOI:10.3390/cancers16234073
Hideto Ueki, Tomoaki Terakawa, Takuto Hara, Munenori Uemura, Yasuyoshi Okamura, Kotaro Suzuki, Yukari Bando, Jun Teishima, Yuzo Nakano, Raizo Yamaguchi, Hideaki Miyake
{"title":"Utility of Machine Learning Models to Predict Lymph Node Metastasis of Japanese Localized Prostate Cancer.","authors":"Hideto Ueki, Tomoaki Terakawa, Takuto Hara, Munenori Uemura, Yasuyoshi Okamura, Kotaro Suzuki, Yukari Bando, Jun Teishima, Yuzo Nakano, Raizo Yamaguchi, Hideaki Miyake","doi":"10.3390/cancers16234073","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/objectives: </strong>Extended pelvic lymph node dissection is a crucial surgical technique for managing intermediate to high-risk prostate cancer. Accurately predicting lymph node metastasis before surgery can minimize unnecessary lymph node dissections and their associated complications. This study assessed the efficacy of various machine learning models for predicting lymph node metastasis in a cohort of Japanese patients who underwent robot-assisted laparoscopic radical prostatectomy.</p><p><strong>Methods: </strong>Data from 625 patients who underwent extended pelvic lymph node dissection or standard dissection with lymph node metastasis between October 2010 and February 2023 were analyzed. Four machine learning models-Random Forest, Light Gradient-Boosting Machine, Logistic Regression, and Support Vector Machine-were used to predict lymph node metastasis. Their performance was assessed using receiver operating characteristic curves, a decision curve analysis, and predictive values at different thresholds.</p><p><strong>Results: </strong>Lymph node metastasis was observed in 34 patients (5.4%). The Light Gradient-Boosting Machine had the highest AUC of 0.924, followed by the Random Forest model with an AUC of 0.894. The decision curve analysis indicated substantial net benefits for both models, particularly at low threshold probabilities. The Light Gradient-Boosting Machine demonstrated superior accuracy, achieving 95.6% at the 0.05 threshold and 96.7% at the 0.10 threshold, outperforming other models and conventional nomograms in the validation dataset.</p><p><strong>Conclusion: </strong>Machine learning models, especially Light Gradient-Boosting Machine and Random Forest, show significant potential for predicting lymph node metastasis in prostate cancer, thereby aiding in reducing unnecessary surgical interventions.</p>","PeriodicalId":9681,"journal":{"name":"Cancers","volume":"16 23","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancers","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/cancers16234073","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background/objectives: Extended pelvic lymph node dissection is a crucial surgical technique for managing intermediate to high-risk prostate cancer. Accurately predicting lymph node metastasis before surgery can minimize unnecessary lymph node dissections and their associated complications. This study assessed the efficacy of various machine learning models for predicting lymph node metastasis in a cohort of Japanese patients who underwent robot-assisted laparoscopic radical prostatectomy.

Methods: Data from 625 patients who underwent extended pelvic lymph node dissection or standard dissection with lymph node metastasis between October 2010 and February 2023 were analyzed. Four machine learning models-Random Forest, Light Gradient-Boosting Machine, Logistic Regression, and Support Vector Machine-were used to predict lymph node metastasis. Their performance was assessed using receiver operating characteristic curves, a decision curve analysis, and predictive values at different thresholds.

Results: Lymph node metastasis was observed in 34 patients (5.4%). The Light Gradient-Boosting Machine had the highest AUC of 0.924, followed by the Random Forest model with an AUC of 0.894. The decision curve analysis indicated substantial net benefits for both models, particularly at low threshold probabilities. The Light Gradient-Boosting Machine demonstrated superior accuracy, achieving 95.6% at the 0.05 threshold and 96.7% at the 0.10 threshold, outperforming other models and conventional nomograms in the validation dataset.

Conclusion: Machine learning models, especially Light Gradient-Boosting Machine and Random Forest, show significant potential for predicting lymph node metastasis in prostate cancer, thereby aiding in reducing unnecessary surgical interventions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cancers
Cancers Medicine-Oncology
CiteScore
8.00
自引率
9.60%
发文量
5371
审稿时长
18.07 days
期刊介绍: Cancers (ISSN 2072-6694) is an international, peer-reviewed open access journal on oncology. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信