The Downregulation of CRIF1 Exerts Antitumor Effects Partially via TP53-Induced Glycolysis and Apoptosis Regulator Induction in BT549 Breast Cancer Cells.

IF 4.5 2区 医学 Q1 ONCOLOGY
Cancers Pub Date : 2024-12-05 DOI:10.3390/cancers16234081
Shuyu Piao, Seonhee Kim, Giang-Huong Vu, Minsoo Kim, Eun-Ok Lee, Byeong Hwa Jeon, Cuk-Seong Kim
{"title":"The Downregulation of CRIF1 Exerts Antitumor Effects Partially via TP53-Induced Glycolysis and Apoptosis Regulator Induction in BT549 Breast Cancer Cells.","authors":"Shuyu Piao, Seonhee Kim, Giang-Huong Vu, Minsoo Kim, Eun-Ok Lee, Byeong Hwa Jeon, Cuk-Seong Kim","doi":"10.3390/cancers16234081","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/objectives: </strong>Mitochondrial oxidative phosphorylation (OXPHOS) has been exploited as a therapeutic target in cancer treatments because of its crucial role in tumorigenesis. CR6-interacting factor 1 (CRIF1), a mitochondrial ribosomal subunit protein, is essential for the regulation of mitochondrial OXPHOS capacity. However, the mechanism of CRIF1 in triple-negative breast cancer (TNBC) cells remains unclear.</p><p><strong>Methods/results: </strong>We showed that the downregulation of CRIF1 reduced cell proliferation in the TNBC cell lines MDA-MB-468, MDA-MB-231, and, especially, BT549. In addition, wound scratch and Transwell assays showed that CRIF1 deficiency inhibited the migration and invasion of BT549 cells. CRIF1 downregulation resulted in the suppression of mitochondrial bioenergetics in BT549 cells, specifically affecting the inhibition of OXPHOS complexes I and II. This was evidenced by a decrease in the mitochondrial oxygen consumption rate and the depolarization of the mitochondrial membrane potential. Damage to mitochondria resulted in a lower adenosine triphosphate level and an elevated production of mitochondrial reactive oxygen species. In addition, CRIF1 deficiency decreased hypoxia-inducible factor 1α accumulation, NADPH synthesis, and TP53-induced glycolysis and apoptosis regulator (TIGAR) expression in BT549 cells. These events contributed to G0/G1-phase cell cycle inhibition and the upregulation of the cell cycle protein markers p53, p21, and p16. Transfection with a TIGAR overexpression plasmid reversed these effects and prevented CRIF1 downregulation-induced proliferation and migration reduction.</p><p><strong>Conclusions: </strong>These results indicate that blocking mitochondrial OXPHOS synthesis via CRIF1 may have a therapeutic antitumor effect in BT549 TNBC cells.</p>","PeriodicalId":9681,"journal":{"name":"Cancers","volume":"16 23","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancers","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/cancers16234081","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background/objectives: Mitochondrial oxidative phosphorylation (OXPHOS) has been exploited as a therapeutic target in cancer treatments because of its crucial role in tumorigenesis. CR6-interacting factor 1 (CRIF1), a mitochondrial ribosomal subunit protein, is essential for the regulation of mitochondrial OXPHOS capacity. However, the mechanism of CRIF1 in triple-negative breast cancer (TNBC) cells remains unclear.

Methods/results: We showed that the downregulation of CRIF1 reduced cell proliferation in the TNBC cell lines MDA-MB-468, MDA-MB-231, and, especially, BT549. In addition, wound scratch and Transwell assays showed that CRIF1 deficiency inhibited the migration and invasion of BT549 cells. CRIF1 downregulation resulted in the suppression of mitochondrial bioenergetics in BT549 cells, specifically affecting the inhibition of OXPHOS complexes I and II. This was evidenced by a decrease in the mitochondrial oxygen consumption rate and the depolarization of the mitochondrial membrane potential. Damage to mitochondria resulted in a lower adenosine triphosphate level and an elevated production of mitochondrial reactive oxygen species. In addition, CRIF1 deficiency decreased hypoxia-inducible factor 1α accumulation, NADPH synthesis, and TP53-induced glycolysis and apoptosis regulator (TIGAR) expression in BT549 cells. These events contributed to G0/G1-phase cell cycle inhibition and the upregulation of the cell cycle protein markers p53, p21, and p16. Transfection with a TIGAR overexpression plasmid reversed these effects and prevented CRIF1 downregulation-induced proliferation and migration reduction.

Conclusions: These results indicate that blocking mitochondrial OXPHOS synthesis via CRIF1 may have a therapeutic antitumor effect in BT549 TNBC cells.

下调 CRIF1 部分通过 TP53 诱导的糖酵解和凋亡调节因子诱导 BT549 乳腺癌细胞发挥抗肿瘤作用
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cancers
Cancers Medicine-Oncology
CiteScore
8.00
自引率
9.60%
发文量
5371
审稿时长
18.07 days
期刊介绍: Cancers (ISSN 2072-6694) is an international, peer-reviewed open access journal on oncology. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信