Weijian Hua, Cheng Zhang, Lily Raymond, Kellen Mitchell, Kuo Xiao, Ryan Coulter, Erick Bandala, Manish Bishwokarma, Ying Yang, Danyang Zhao, Na Xiao, Yifei Jin
{"title":"Embedded 3D printing of engineered lung cancer model for assisting fine-needle aspiration biopsy.","authors":"Weijian Hua, Cheng Zhang, Lily Raymond, Kellen Mitchell, Kuo Xiao, Ryan Coulter, Erick Bandala, Manish Bishwokarma, Ying Yang, Danyang Zhao, Na Xiao, Yifei Jin","doi":"10.1088/1758-5090/ad9fe0","DOIUrl":null,"url":null,"abstract":"<p><p>Lung cancer is a serious global health issue that requires the development of patient-specific, lung cancer model for surgical planning to train interventionalists and improve the accuracy of biopsies. Although the emergence of three-dimensional (3D) printing provides a promising solution to create customized models with complicated architectures, current 3D printing methods cannot accurately duplicate anatomical-level lung constructs with tumor(s) which are applicable for hands-on training and procedure planning. To address this issue, an embedded printing strategy is proposed to create respiratory bronchioles, blood vessels, and tumors in a photocurable yield-stress matrix bath. After crosslinking, a patient-specific lung cancer analogous model is produced, which has tunable transparency and mechanical properties to mimic lung parenchyma. This engineered model not only enables the practical training of fine-needle aspiration biopsy but also provides the necessary information, such as coordinates of aspiration, wound depth, and interference with surrounding tissues, for procedure optimization.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofabrication","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1758-5090/ad9fe0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Lung cancer is a serious global health issue that requires the development of patient-specific, lung cancer model for surgical planning to train interventionalists and improve the accuracy of biopsies. Although the emergence of three-dimensional (3D) printing provides a promising solution to create customized models with complicated architectures, current 3D printing methods cannot accurately duplicate anatomical-level lung constructs with tumor(s) which are applicable for hands-on training and procedure planning. To address this issue, an embedded printing strategy is proposed to create respiratory bronchioles, blood vessels, and tumors in a photocurable yield-stress matrix bath. After crosslinking, a patient-specific lung cancer analogous model is produced, which has tunable transparency and mechanical properties to mimic lung parenchyma. This engineered model not only enables the practical training of fine-needle aspiration biopsy but also provides the necessary information, such as coordinates of aspiration, wound depth, and interference with surrounding tissues, for procedure optimization.
期刊介绍:
Biofabrication is dedicated to advancing cutting-edge research on the utilization of cells, proteins, biological materials, and biomaterials as fundamental components for the construction of biological systems and/or therapeutic products. Additionally, it proudly serves as the official journal of the International Society for Biofabrication (ISBF).