Zinc-Biofortified Rice Improves Growth in Zinc-Deficient Rats.

IF 3.4 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Venu Konda, Ravindranadh Palika, Ananthan Rajendran, C N Neeraja, R M Sundaram, Raghu Pullakhandam
{"title":"Zinc-Biofortified Rice Improves Growth in Zinc-Deficient Rats.","authors":"Venu Konda, Ravindranadh Palika, Ananthan Rajendran, C N Neeraja, R M Sundaram, Raghu Pullakhandam","doi":"10.1007/s12011-024-04487-9","DOIUrl":null,"url":null,"abstract":"<p><p>Biofortification of staple food crops with zinc (Zn) is considered a sustainable strategy to prevent deficiency, but evidence on their health impact is awaited. The weaning Wistar/Kyoto male rats were fed on a Zn-deficient diet (ZDD, < 0.1 ppm) for 4 weeks followed by repletion (pair feeding) with control rice diet without (CRD; 5.0 ± 0.23 ppm) or with additional Zn (CRD + Zn, 30.3 ± 0.60 ppm) or biofortified rice diet (BRD; 8.54 ± 0.51 ppm) for 3 weeks. Body weights, plasma, liver, pancreatic, fecal Zn levels, and intestinal ZIP4 and ZnT1 mRNA expression were measured at the end of the experiment. The body weight of rats fed on CRD or CRD + Zn or BRD significantly increased (p < 0.01) compared to rats fed on ZDD. The body weight BRD was significantly higher compared to CRD (P < 0.01), both of which remained lower compared to CRD + Zn (p < 0.03). Repletion of Zn through either CRD or BRD significantly increased the plasma Zn concentration (PZC), tissue, and fecal Zn excretion compared to ZDD, without significant between-group differences. However, PZC, tissue, and fecal Zn of CRD + Zn was significantly higher compared to the rest of the groups. The intestinal ZIP4 and ZnT1 mRNA expressions are consistent with Zn status and/or dietary Zn exposure. A similar PZC, tissue, and fecal Zn in CRD compared to BRD, despite higher Zn intakes in the latter, could be due to preferential shuttling of Zn for growth. Together, these results indicate that Zn from biofortified rice is efficiently utilized for promoting the growth in Zn-deficient rats.</p>","PeriodicalId":8917,"journal":{"name":"Biological Trace Element Research","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Trace Element Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12011-024-04487-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Biofortification of staple food crops with zinc (Zn) is considered a sustainable strategy to prevent deficiency, but evidence on their health impact is awaited. The weaning Wistar/Kyoto male rats were fed on a Zn-deficient diet (ZDD, < 0.1 ppm) for 4 weeks followed by repletion (pair feeding) with control rice diet without (CRD; 5.0 ± 0.23 ppm) or with additional Zn (CRD + Zn, 30.3 ± 0.60 ppm) or biofortified rice diet (BRD; 8.54 ± 0.51 ppm) for 3 weeks. Body weights, plasma, liver, pancreatic, fecal Zn levels, and intestinal ZIP4 and ZnT1 mRNA expression were measured at the end of the experiment. The body weight of rats fed on CRD or CRD + Zn or BRD significantly increased (p < 0.01) compared to rats fed on ZDD. The body weight BRD was significantly higher compared to CRD (P < 0.01), both of which remained lower compared to CRD + Zn (p < 0.03). Repletion of Zn through either CRD or BRD significantly increased the plasma Zn concentration (PZC), tissue, and fecal Zn excretion compared to ZDD, without significant between-group differences. However, PZC, tissue, and fecal Zn of CRD + Zn was significantly higher compared to the rest of the groups. The intestinal ZIP4 and ZnT1 mRNA expressions are consistent with Zn status and/or dietary Zn exposure. A similar PZC, tissue, and fecal Zn in CRD compared to BRD, despite higher Zn intakes in the latter, could be due to preferential shuttling of Zn for growth. Together, these results indicate that Zn from biofortified rice is efficiently utilized for promoting the growth in Zn-deficient rats.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biological Trace Element Research
Biological Trace Element Research 生物-内分泌学与代谢
CiteScore
8.70
自引率
10.30%
发文量
459
审稿时长
2 months
期刊介绍: Biological Trace Element Research provides a much-needed central forum for the emergent, interdisciplinary field of research on the biological, environmental, and biomedical roles of trace elements. Rather than confine itself to biochemistry, the journal emphasizes the integrative aspects of trace metal research in all appropriate fields, publishing human and animal nutritional studies devoted to the fundamental chemistry and biochemistry at issue as well as to the elucidation of the relevant aspects of preventive medicine, epidemiology, clinical chemistry, agriculture, endocrinology, animal science, pharmacology, microbiology, toxicology, virology, marine biology, sensory physiology, developmental biology, and related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信