Making dew in the Atacama Desert: a paradigmatic case of plant water uptake water from an unsaturated atmosphere fails a test.

IF 3.6 2区 生物学 Q1 PLANT SCIENCES
Jess Gersony, Anju Manandhar, Uri Hochberg, Nora Abdellaoui, Paula Llanos, Jacques Dumais, N Michele Holbrook, Fulton E Rockwell
{"title":"Making dew in the Atacama Desert: a paradigmatic case of plant water uptake water from an unsaturated atmosphere fails a test.","authors":"Jess Gersony, Anju Manandhar, Uri Hochberg, Nora Abdellaoui, Paula Llanos, Jacques Dumais, N Michele Holbrook, Fulton E Rockwell","doi":"10.1093/aob/mcae221","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and aims: </strong>Nolana mollis is a dominant plant species in the hyperarid Atacama Desert. A previous hypothesis states that N. mollis owes its success to the condensation of atmospheric water from undersaturated air onto its leaf surfaces by exuded salts, and absorption of this water by its leaves, or by shallow roots following drip onto the soil surface; living roots of N. mollis were suggested to only exist near the soil surface.</p><p><strong>Methods: </strong>We conducted a field experiment with three treatments to establish the source of N. mollis's water: control, root cutting to block uptake of all soil moisture, and plastic skirting at the soil surface to block leaf drip of atmospheric water.</p><p><strong>Key results: </strong>Xylem tensions monotonically increased after root cutting until the plants wilted irreversibly, diverging clearly from the skirted and control treatments showing diurnal patterns of increasing tension in the day followed by recovery overnight.</p><p><strong>Conclusions: </strong>Hydration in N. mollis requires access to deep soil water, motivating an alternative hypothesis: imperfect salt exclusion at the root surface and salt exudation by the leaf results in less root fouling and lower xylem tensions, while during the day evaporation of the surface brine, condensed overnight, increases the water use efficiency of carbon gain.</p>","PeriodicalId":8023,"journal":{"name":"Annals of botany","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/aob/mcae221","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background and aims: Nolana mollis is a dominant plant species in the hyperarid Atacama Desert. A previous hypothesis states that N. mollis owes its success to the condensation of atmospheric water from undersaturated air onto its leaf surfaces by exuded salts, and absorption of this water by its leaves, or by shallow roots following drip onto the soil surface; living roots of N. mollis were suggested to only exist near the soil surface.

Methods: We conducted a field experiment with three treatments to establish the source of N. mollis's water: control, root cutting to block uptake of all soil moisture, and plastic skirting at the soil surface to block leaf drip of atmospheric water.

Key results: Xylem tensions monotonically increased after root cutting until the plants wilted irreversibly, diverging clearly from the skirted and control treatments showing diurnal patterns of increasing tension in the day followed by recovery overnight.

Conclusions: Hydration in N. mollis requires access to deep soil water, motivating an alternative hypothesis: imperfect salt exclusion at the root surface and salt exudation by the leaf results in less root fouling and lower xylem tensions, while during the day evaporation of the surface brine, condensed overnight, increases the water use efficiency of carbon gain.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of botany
Annals of botany 生物-植物科学
CiteScore
7.90
自引率
4.80%
发文量
138
审稿时长
3 months
期刊介绍: Annals of Botany is an international plant science journal publishing novel and rigorous research in all areas of plant science. It is published monthly in both electronic and printed forms with at least two extra issues each year that focus on a particular theme in plant biology. The Journal is managed by the Annals of Botany Company, a not-for-profit educational charity established to promote plant science worldwide. The Journal publishes original research papers, invited and submitted review articles, ''Research in Context'' expanding on original work, ''Botanical Briefings'' as short overviews of important topics, and ''Viewpoints'' giving opinions. All papers in each issue are summarized briefly in Content Snapshots , there are topical news items in the Plant Cuttings section and Book Reviews . A rigorous review process ensures that readers are exposed to genuine and novel advances across a wide spectrum of botanical knowledge. All papers aim to advance knowledge and make a difference to our understanding of plant science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信