Smart Compositional Design of B-Site Ordered Double Perovskite for Advanced Oxygen Catalysis at Ultra-High Current Densities

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Maria Christy, Jiseok Kwon, Sathya Sheela Subramanian, Seunggun Choi, Junghyun Choi, Jung Ho Kim, Ungyu Paik, Taeseup Song
{"title":"Smart Compositional Design of B-Site Ordered Double Perovskite for Advanced Oxygen Catalysis at Ultra-High Current Densities","authors":"Maria Christy,&nbsp;Jiseok Kwon,&nbsp;Sathya Sheela Subramanian,&nbsp;Seunggun Choi,&nbsp;Junghyun Choi,&nbsp;Jung Ho Kim,&nbsp;Ungyu Paik,&nbsp;Taeseup Song","doi":"10.1002/smtd.202401480","DOIUrl":null,"url":null,"abstract":"<p>Perovskite oxides have been considered promising oxygen catalysts for oxygen reduction and evolution reactions (ORR and OER), owing to structural and compositional flexibility, and tailorable properties. Ingenious B-site ordered La<sub>1.5</sub>Sr<sub>0.5</sub>NiMn<sub>0.5</sub>Fe<sub>0.5</sub>O<sub>6</sub> (LSNMF) double perovskite is strategically designed by simultaneously interposing Ni<sub>0.5</sub>Mn<sub>0.5</sub> and Ni<sub>0.5</sub>Fe<sub>0.5</sub> into B′ and B″ sites. Controlling B-site cation systematically tailors the electronic structure of the B-site cation with a d-band center (M<sub>d</sub>) upshift close to the Fermi level, increasing the overlap of the M<sub>d</sub> center and O 2p center (O<sub>P</sub>). The strong interaction of M<sub>d</sub> and O<sub>p</sub> facilitates the adsorption of oxygen and activates the lattice oxygen to participate in the OER process, thereby enhancing the ORR and OER activity. For ORR, LSNMF exhibited an onset potential of 0.9 V along with a high limiting current of −8.05 mA cm<sup>−2</sup>. At the same time, for OER at 1 <span>m</span> KOH, LSNMF effectively reached a maximum current density of 3000 mA cm<sup>−2</sup>. Most importantly, the difference between E<sub>ORR</sub> (at −1 mA cm<sup>−2</sup>) and E<sub>OER</sub> (at 10 mA cm<sup>−2</sup>), ΔE is 0.69 V, which stands among the best of recently reported perovskites. The as-designed LSNMF is stable, efficient, lucrative, and a promising candidate for practical application.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":"9 4","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smtd.202401480","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Perovskite oxides have been considered promising oxygen catalysts for oxygen reduction and evolution reactions (ORR and OER), owing to structural and compositional flexibility, and tailorable properties. Ingenious B-site ordered La1.5Sr0.5NiMn0.5Fe0.5O6 (LSNMF) double perovskite is strategically designed by simultaneously interposing Ni0.5Mn0.5 and Ni0.5Fe0.5 into B′ and B″ sites. Controlling B-site cation systematically tailors the electronic structure of the B-site cation with a d-band center (Md) upshift close to the Fermi level, increasing the overlap of the Md center and O 2p center (OP). The strong interaction of Md and Op facilitates the adsorption of oxygen and activates the lattice oxygen to participate in the OER process, thereby enhancing the ORR and OER activity. For ORR, LSNMF exhibited an onset potential of 0.9 V along with a high limiting current of −8.05 mA cm−2. At the same time, for OER at 1 m KOH, LSNMF effectively reached a maximum current density of 3000 mA cm−2. Most importantly, the difference between EORR (at −1 mA cm−2) and EOER (at 10 mA cm−2), ΔE is 0.69 V, which stands among the best of recently reported perovskites. The as-designed LSNMF is stable, efficient, lucrative, and a promising candidate for practical application.

用于超高电流密度先进氧催化的b位有序双钙钛矿的智能组成设计。
钙钛矿氧化物由于其结构和组成的灵活性以及可定制的性能,被认为是氧还原和进化反应(ORR和OER)中很有前途的氧催化剂。通过在B′和B″位点同时插入Ni0.5Mn0.5和Ni0.5Fe0.5,战略性地设计了巧妙的B位点有序La1.5Sr0.5NiMn0.5Fe0.5O6 (LSNMF)双钙钛矿。系统地控制b位阳离子,使b位阳离子的d带中心(Md)上移接近费米能级,增加了Md中心和O 2p中心(OP)的重叠。Md和Op的强相互作用促进了氧的吸附,激活了晶格氧参与OER过程,从而提高了ORR和OER活性。对于ORR, LSNMF表现出0.9 V的起始电位和-8.05 mA cm-2的高极限电流。同时,在1 m KOH的OER下,LSNMF有效地达到了3000 mA cm-2的最大电流密度。最重要的是,EORR (- 1ma cm-2)和EOER (10ma cm-2)之间的差异ΔE为0.69 V,是最近报道的最好的钙钛矿之一。设计的LSNMF稳定、高效、有利可图,具有实际应用的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信