Reconfiguration of Intrinsic Depletion-Mode Characteristics of MoS2 Field-Effect Transistors to High-Performance Enhancement-Mode Operation Using an Argon Plasma-Induced p-Type Doping Technique.
{"title":"Reconfiguration of Intrinsic Depletion-Mode Characteristics of MoS<sub>2</sub> Field-Effect Transistors to High-Performance Enhancement-Mode Operation Using an Argon Plasma-Induced p-Type Doping Technique.","authors":"Anand Kumar Rai, Asif A Shah, Aadil Bashir Dar, Jeevesh Kumar, Mayank Shrivastava","doi":"10.1002/smtd.202401001","DOIUrl":null,"url":null,"abstract":"<p><p>The intrinsic n-type behavior and unavailability of the appropriate p-type doping method for MoS<sub>2</sub> allows only n-type conduction with depletion mode (D-mode) characteristics and forbids the implementation of p-type field-effect transistors (FETs). The D-mode characteristic results in a high off-current (I<sub>OFF</sub>) at zero gate bias, which limits the usage of MoS<sub>2</sub> FETs for industry-scale (n-channel metal-oxide semiconductor) NMOS/(complementary metal-oxide semiconductor) CMOS-logic-based applications due to significant power dissipation. Both these issues, i.e., i) missing technique for p-type doping and ii) D-mode operation are addressed here through the application of argon (Ar) plasma and subsequent O<sub>2</sub> bath. Here, Ar plasma results in the physical removal of sulfur (S) atoms from the MoS<sub>2</sub> surface, introducing sulfur vacancies, and the O<sub>2</sub> bath results in the chemical bonding of O<sub>2</sub> molecules with molybdenum (Mo) atoms at the introduced S vacancy sites. This leads to the formation of shallow acceptor states near the valance band (VB) of MoS<sub>2</sub>, resulting in p-type doping and enhancement mode (E-mode) characteristics of MoS<sub>2</sub> FETs. Moreover, using Ar plasma results in the reduction of contact resistance (R<sub>C</sub>) of E-mode MoS<sub>2</sub> FETs and hence facilitates achieving high-performance top-gated E-mode MoS<sub>2</sub> FETs with I<sub>OFF</sub> (at zero gate bias) in tens of picoamperes and I<sub>ON</sub>/I<sub>OFF</sub> in seven orders.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401001"},"PeriodicalIF":10.7000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401001","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The intrinsic n-type behavior and unavailability of the appropriate p-type doping method for MoS2 allows only n-type conduction with depletion mode (D-mode) characteristics and forbids the implementation of p-type field-effect transistors (FETs). The D-mode characteristic results in a high off-current (IOFF) at zero gate bias, which limits the usage of MoS2 FETs for industry-scale (n-channel metal-oxide semiconductor) NMOS/(complementary metal-oxide semiconductor) CMOS-logic-based applications due to significant power dissipation. Both these issues, i.e., i) missing technique for p-type doping and ii) D-mode operation are addressed here through the application of argon (Ar) plasma and subsequent O2 bath. Here, Ar plasma results in the physical removal of sulfur (S) atoms from the MoS2 surface, introducing sulfur vacancies, and the O2 bath results in the chemical bonding of O2 molecules with molybdenum (Mo) atoms at the introduced S vacancy sites. This leads to the formation of shallow acceptor states near the valance band (VB) of MoS2, resulting in p-type doping and enhancement mode (E-mode) characteristics of MoS2 FETs. Moreover, using Ar plasma results in the reduction of contact resistance (RC) of E-mode MoS2 FETs and hence facilitates achieving high-performance top-gated E-mode MoS2 FETs with IOFF (at zero gate bias) in tens of picoamperes and ION/IOFF in seven orders.
利用氩等离子体诱导 p 型掺杂技术重新配置 MoS2 场效应晶体管的本征耗尽模式特性,使其进入高性能增强模式运行。
由于 MoS2 固有的 n 型特性以及无法采用适当的 p 型掺杂方法,因此只能以耗尽模式(D 型)特性进行 n 型传导,而无法实现 p 型场效应晶体管(FET)。D 模式特性会导致在零栅极偏置时产生较高的关断电流 (IOFF),这就限制了 MoS2 场效应晶体管在基于工业规模(n 沟道金属氧化物半导体)NMOS/(互补金属氧化物半导体)CMOS 逻辑应用中的使用,因为这会造成巨大的功率耗散。这里通过应用氩(Ar)等离子体和随后的氧气浴解决了这两个问题,即 i) 缺少 p 型掺杂技术和 ii) D 模式操作。在这里,氩等离子体会物理去除 MoS2 表面的硫(S)原子,从而引入硫空位,而 O2 浴则会在引入的 S 空位上使 O2 分子与钼(Mo)原子发生化学键合。这导致在 MoS2 的价带 (VB) 附近形成浅受体态,从而形成 MoS2 FET 的 p 型掺杂和增强模式 (E 模式) 特性。此外,使用氩等离子体还能降低 E 模式 MoS2 FET 的接触电阻 (RC),从而有助于实现高性能的顶部栅极 E 模式 MoS2 FET,其 IOFF(零栅极偏压时)可达数十皮安,ION/IOFF 可达到七个数量级。
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.