Integrative evidence on the hybridization between Cenostigma microphyllum and C. pyramidale (Leguminosae) in the Caatinga dry forest.

IF 4.2 3区 生物学 Q1 PLANT SCIENCES
Plant Biology Pub Date : 2024-12-16 DOI:10.1111/plb.13753
P Aecyo, L Costa, U P Jacobina, W Harand, I R Leal, G Souza, A Pedrosa-Harand
{"title":"Integrative evidence on the hybridization between Cenostigma microphyllum and C. pyramidale (Leguminosae) in the Caatinga dry forest.","authors":"P Aecyo, L Costa, U P Jacobina, W Harand, I R Leal, G Souza, A Pedrosa-Harand","doi":"10.1111/plb.13753","DOIUrl":null,"url":null,"abstract":"<p><p>Interspecific hybridization plays an important role in plant evolution, contributing to taxonomic uncertainty through intermediate phenotypes or the emergence of novel traits. The characterization of hybridization is important to elucidate systematic relationships and its role in the diversification of lineages. The genus Cenostigma comprises neotropical legume trees with phylogenetic inconsistencies, and individuals showing intermediate morphology between sympatric species, suggesting natural hybridization. We tested this hypothesis by investigating two endemic species from the Caatinga dry forest in northeast Brazil (C. microphyllum and C. pyramidale) using molecular markers (nuclear and plastid SSRs), geometric morphometrics, non-targeted metabolomics, and ecological analyses. We detected a high plastidial genetic structure among populations, not related to species boundaries but to their geographic distribution. The geometric morphometric analysis showed a clustering of pure individuals of both species with hybrids in an intermediate position, demonstrating the hybridization of these species in Caatinga. Nuclear DNA and metabolite diversity supported the separation of the two species into three clusters, with a subdivision of C. pyramidale in populations from the north (Pernambuco) and south (Bahia). Metabolomics revealed a fourth group formed mostly by hybrids. Later generation hybrids were detected as intermediate morphological forms, and gene flow was assumed as asymmetric among species and populations, being higher from C. pyramidale to C. microphyllum in populations from Bahia State. Ecological data indicated niche overlap. Hence, interspecific gene flow occurs among Cenostigma tree species, contributing to the evolution of the dry forest. Given the karyotypic and genomic similarity among species, as well as molecular and ecological evidence, we infer that the hybrids are fertile, allowing introgression and contributing to systematic complexity in Cenostigma. Hybridization did not significantly increase chemodiversity in terms of novel compounds but differentiated hybrids from parental species. In summary, we highlight the importance of multiple evidence, particularly genetic, morphological, and metabolomic traits, in the identification of hybrids and its evolutionary impact in natural environments.</p>","PeriodicalId":220,"journal":{"name":"Plant Biology","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/plb.13753","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Interspecific hybridization plays an important role in plant evolution, contributing to taxonomic uncertainty through intermediate phenotypes or the emergence of novel traits. The characterization of hybridization is important to elucidate systematic relationships and its role in the diversification of lineages. The genus Cenostigma comprises neotropical legume trees with phylogenetic inconsistencies, and individuals showing intermediate morphology between sympatric species, suggesting natural hybridization. We tested this hypothesis by investigating two endemic species from the Caatinga dry forest in northeast Brazil (C. microphyllum and C. pyramidale) using molecular markers (nuclear and plastid SSRs), geometric morphometrics, non-targeted metabolomics, and ecological analyses. We detected a high plastidial genetic structure among populations, not related to species boundaries but to their geographic distribution. The geometric morphometric analysis showed a clustering of pure individuals of both species with hybrids in an intermediate position, demonstrating the hybridization of these species in Caatinga. Nuclear DNA and metabolite diversity supported the separation of the two species into three clusters, with a subdivision of C. pyramidale in populations from the north (Pernambuco) and south (Bahia). Metabolomics revealed a fourth group formed mostly by hybrids. Later generation hybrids were detected as intermediate morphological forms, and gene flow was assumed as asymmetric among species and populations, being higher from C. pyramidale to C. microphyllum in populations from Bahia State. Ecological data indicated niche overlap. Hence, interspecific gene flow occurs among Cenostigma tree species, contributing to the evolution of the dry forest. Given the karyotypic and genomic similarity among species, as well as molecular and ecological evidence, we infer that the hybrids are fertile, allowing introgression and contributing to systematic complexity in Cenostigma. Hybridization did not significantly increase chemodiversity in terms of novel compounds but differentiated hybrids from parental species. In summary, we highlight the importance of multiple evidence, particularly genetic, morphological, and metabolomic traits, in the identification of hybrids and its evolutionary impact in natural environments.

卡廷加旱林中 Cenostigma microphyllum 和 C. pyramidale(豆科植物)杂交的综合证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Biology
Plant Biology 生物-植物科学
CiteScore
8.20
自引率
2.60%
发文量
109
审稿时长
3 months
期刊介绍: Plant Biology is an international journal of broad scope bringing together the different subdisciplines, such as physiology, molecular biology, cell biology, development, genetics, systematics, ecology, evolution, ecophysiology, plant-microbe interactions, and mycology. Plant Biology publishes original problem-oriented full-length research papers, short research papers, and review articles. Discussion of hot topics and provocative opinion articles are published under the heading Acute Views. From a multidisciplinary perspective, Plant Biology will provide a platform for publication, information and debate, encompassing all areas which fall within the scope of plant science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信