Enhanced performance of hafnia self-rectifying ferroelectric tunnel junctions at cryogenic temperatures

IF 13.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Junghyeon Hwang, Chaeheon Kim, Jinho Ahn, Sanghun Jeon
{"title":"Enhanced performance of hafnia self-rectifying ferroelectric tunnel junctions at cryogenic temperatures","authors":"Junghyeon Hwang,&nbsp;Chaeheon Kim,&nbsp;Jinho Ahn,&nbsp;Sanghun Jeon","doi":"10.1186/s40580-024-00461-2","DOIUrl":null,"url":null,"abstract":"<div><p>The advancement in high-performance computing technologies, including quantum and aerospace systems, necessitates components that operate efficiently at cryogenic temperatures. In this study, we demonstrate a hafnia-based ferroelectric tunnel junction (FTJ) that achieves a record-high tunneling electroresistance (TER) ratio of over 200,000 and decade-long retention characteristics. By introducing asymmetric oxygen vacancies through the strategic use of indium oxide (InO<sub>x</sub>) layer, we enhance the TER ratio without increasing off-current, addressing the longstanding issue of low on-current in hafnia-based FTJs. Unlike prior approaches that led to leakage currents, our method optimizes tunneling behavior by leveraging the differential oxygen dissociation energy between InO<sub>x</sub> and hafnium zirconium oxide (HZO). This results in asymmetric modulation of the tunnel barrier, enhancing electron tunneling in one polarization state while maintaining stability in the opposite state. Furthermore, we explore the intrinsic characteristics of the FTJ at cryogenic temperatures, where reduced thermal energy minimizes leakage currents and allows the maximization of device performance. These findings establish a new benchmark for TER in hafnia-based FTJs and provide valuable insights for the integration of these devices into advanced cryogenic memory systems.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"11 1","pages":""},"PeriodicalIF":13.4000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-024-00461-2","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Convergence","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s40580-024-00461-2","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The advancement in high-performance computing technologies, including quantum and aerospace systems, necessitates components that operate efficiently at cryogenic temperatures. In this study, we demonstrate a hafnia-based ferroelectric tunnel junction (FTJ) that achieves a record-high tunneling electroresistance (TER) ratio of over 200,000 and decade-long retention characteristics. By introducing asymmetric oxygen vacancies through the strategic use of indium oxide (InOx) layer, we enhance the TER ratio without increasing off-current, addressing the longstanding issue of low on-current in hafnia-based FTJs. Unlike prior approaches that led to leakage currents, our method optimizes tunneling behavior by leveraging the differential oxygen dissociation energy between InOx and hafnium zirconium oxide (HZO). This results in asymmetric modulation of the tunnel barrier, enhancing electron tunneling in one polarization state while maintaining stability in the opposite state. Furthermore, we explore the intrinsic characteristics of the FTJ at cryogenic temperatures, where reduced thermal energy minimizes leakage currents and allows the maximization of device performance. These findings establish a new benchmark for TER in hafnia-based FTJs and provide valuable insights for the integration of these devices into advanced cryogenic memory systems.

Graphical Abstract

在低温下增强半铪自整流铁电隧道结的性能。
高性能计算技术的进步,包括量子和航空航天系统,需要在低温下高效运行的组件。在这项研究中,我们展示了一种基于铪的铁电隧道结(FTJ),它实现了超过20万的创纪录的隧道电阻(TER)比和长达十年的保持特性。通过战略性地使用氧化铟(InOx)层引入不对称氧空位,我们在不增加关流的情况下提高了TER比率,解决了长期以来基于铪的ftj的低通流问题。与之前导致泄漏电流的方法不同,我们的方法通过利用InOx和氧化锆铪(HZO)之间不同的氧解离能来优化隧道行为。这导致了隧道势垒的不对称调制,增强了电子在一个偏振态的隧穿,同时保持了相反偏振态的稳定。此外,我们探索了低温下FTJ的固有特性,在低温下,减少的热能使泄漏电流最小化,并使器件性能最大化。这些发现为基于hafnia的ftj中的TER建立了新的基准,并为将这些设备集成到先进的低温存储系统中提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Convergence
Nano Convergence Engineering-General Engineering
CiteScore
15.90
自引率
2.60%
发文量
50
审稿时长
13 weeks
期刊介绍: Nano Convergence is an internationally recognized, peer-reviewed, and interdisciplinary journal designed to foster effective communication among scientists spanning diverse research areas closely aligned with nanoscience and nanotechnology. Dedicated to encouraging the convergence of technologies across the nano- to microscopic scale, the journal aims to unveil novel scientific domains and cultivate fresh research prospects. Operating on a single-blind peer-review system, Nano Convergence ensures transparency in the review process, with reviewers cognizant of authors' names and affiliations while maintaining anonymity in the feedback provided to authors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信