Fully Printable Manufacturing of Miniaturized, Highly Integrated, Flexible Evaporation-Driven Electricity Generator Arrays.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Qun Liu, Panwang Guo, Xinyu Zhang, Hehe Ren, Jing Liang, Quancai Li, Weinan Tang, Wei Wu
{"title":"Fully Printable Manufacturing of Miniaturized, Highly Integrated, Flexible Evaporation-Driven Electricity Generator Arrays.","authors":"Qun Liu, Panwang Guo, Xinyu Zhang, Hehe Ren, Jing Liang, Quancai Li, Weinan Tang, Wei Wu","doi":"10.1002/advs.202413779","DOIUrl":null,"url":null,"abstract":"<p><p>Harvesting sustainable clean energy from natural water evaporation holds great promise to provide continuous power for portable and wearable electronics. However, poor portability and complex fabrication processes hinder the low-cost and large-scale integration of flexible evaporation-driven electricity generators (FEEGs). Herein, a fully-printed flexible evaporation-driven generator (PFEEG) is developed. Utilizing custom-formulated functional inks, the asymmetric structures, current collectors, and hygroscopic water storage units can be manufactured by a patternable, scalable, and layer-by-layer deposition technique of screen printing. Thus, a PFEEG unit (0.5 cm × 1 cm × 38 µm) can generate a voltage of ≈0.8 V over a wide relative humidity (RH) range from 20% to 90%, and a maximum power density of 1.55 µW cm<sup>-2</sup> at 70% RH. An array of 200 PFEEGs connected in series or parallel can produce voltages up to 152.41 V or a current up to 1.02 mA. Furthermore, the scalable PFEEG array can not only be seamlessly connected with the printed flexible circuit but can also be integrated with a humidity sensor and display arrays to form a self-powered printed flexible sensing system. This work presents a practical strategy for continuous power supply of portable and wearable electronics.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2413779"},"PeriodicalIF":14.3000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202413779","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Harvesting sustainable clean energy from natural water evaporation holds great promise to provide continuous power for portable and wearable electronics. However, poor portability and complex fabrication processes hinder the low-cost and large-scale integration of flexible evaporation-driven electricity generators (FEEGs). Herein, a fully-printed flexible evaporation-driven generator (PFEEG) is developed. Utilizing custom-formulated functional inks, the asymmetric structures, current collectors, and hygroscopic water storage units can be manufactured by a patternable, scalable, and layer-by-layer deposition technique of screen printing. Thus, a PFEEG unit (0.5 cm × 1 cm × 38 µm) can generate a voltage of ≈0.8 V over a wide relative humidity (RH) range from 20% to 90%, and a maximum power density of 1.55 µW cm-2 at 70% RH. An array of 200 PFEEGs connected in series or parallel can produce voltages up to 152.41 V or a current up to 1.02 mA. Furthermore, the scalable PFEEG array can not only be seamlessly connected with the printed flexible circuit but can also be integrated with a humidity sensor and display arrays to form a self-powered printed flexible sensing system. This work presents a practical strategy for continuous power supply of portable and wearable electronics.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信