{"title":"Fully Printable Manufacturing of Miniaturized, Highly Integrated, Flexible Evaporation-Driven Electricity Generator Arrays.","authors":"Qun Liu, Panwang Guo, Xinyu Zhang, Hehe Ren, Jing Liang, Quancai Li, Weinan Tang, Wei Wu","doi":"10.1002/advs.202413779","DOIUrl":null,"url":null,"abstract":"<p><p>Harvesting sustainable clean energy from natural water evaporation holds great promise to provide continuous power for portable and wearable electronics. However, poor portability and complex fabrication processes hinder the low-cost and large-scale integration of flexible evaporation-driven electricity generators (FEEGs). Herein, a fully-printed flexible evaporation-driven generator (PFEEG) is developed. Utilizing custom-formulated functional inks, the asymmetric structures, current collectors, and hygroscopic water storage units can be manufactured by a patternable, scalable, and layer-by-layer deposition technique of screen printing. Thus, a PFEEG unit (0.5 cm × 1 cm × 38 µm) can generate a voltage of ≈0.8 V over a wide relative humidity (RH) range from 20% to 90%, and a maximum power density of 1.55 µW cm<sup>-2</sup> at 70% RH. An array of 200 PFEEGs connected in series or parallel can produce voltages up to 152.41 V or a current up to 1.02 mA. Furthermore, the scalable PFEEG array can not only be seamlessly connected with the printed flexible circuit but can also be integrated with a humidity sensor and display arrays to form a self-powered printed flexible sensing system. This work presents a practical strategy for continuous power supply of portable and wearable electronics.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2413779"},"PeriodicalIF":14.3000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202413779","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Harvesting sustainable clean energy from natural water evaporation holds great promise to provide continuous power for portable and wearable electronics. However, poor portability and complex fabrication processes hinder the low-cost and large-scale integration of flexible evaporation-driven electricity generators (FEEGs). Herein, a fully-printed flexible evaporation-driven generator (PFEEG) is developed. Utilizing custom-formulated functional inks, the asymmetric structures, current collectors, and hygroscopic water storage units can be manufactured by a patternable, scalable, and layer-by-layer deposition technique of screen printing. Thus, a PFEEG unit (0.5 cm × 1 cm × 38 µm) can generate a voltage of ≈0.8 V over a wide relative humidity (RH) range from 20% to 90%, and a maximum power density of 1.55 µW cm-2 at 70% RH. An array of 200 PFEEGs connected in series or parallel can produce voltages up to 152.41 V or a current up to 1.02 mA. Furthermore, the scalable PFEEG array can not only be seamlessly connected with the printed flexible circuit but can also be integrated with a humidity sensor and display arrays to form a self-powered printed flexible sensing system. This work presents a practical strategy for continuous power supply of portable and wearable electronics.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.