Carbon Nanocage-in-Microcage Structure With Tunable Carbon-Coated Nickel as a Microwave Absorber With Infrared Stealth Property.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhaoyang Li, Yang Xu, Lihong Wu, Yu Sun, Mingnan Zhang, Zhifeng Dou, Jinchuan Zhao, Yongzhu Yan, Guizhen Wang
{"title":"Carbon Nanocage-in-Microcage Structure With Tunable Carbon-Coated Nickel as a Microwave Absorber With Infrared Stealth Property.","authors":"Zhaoyang Li, Yang Xu, Lihong Wu, Yu Sun, Mingnan Zhang, Zhifeng Dou, Jinchuan Zhao, Yongzhu Yan, Guizhen Wang","doi":"10.1002/advs.202412890","DOIUrl":null,"url":null,"abstract":"<p><p>The rational design of microwave absorption (MA) material featuring light weight, wide absorption bandwidth, and infrared stealth property is crucial for military stealth and health protection but remains challenging. Herein, an innovative N-doped carbon nanocage-in-microcage structure with tunable carbon-coated Ni (NC/Ni(HS)) is reported via a reliable Ni-catalyzed and Ni-templated method. The hierarchically hollow structure of nanocage-in-microcage composites can optimize the impedance matching and respond to multiple reflections and scattering of incident microwaves and infrared waves. Moreover, the magnetic Ni nanoparticles improve the synergistic interactions between confined heterointerfaces and promote interfacial polarization. Such an ingenious structure endows NC/Ni(HS) with outstanding MA performance and infrared stealth properties. Specifically, NC/Ni(HS)-10 with an optimal dielectric property, exhibits excellent MA performance. At an ultralow fill loading of 4 wt.%, a wide absorption bandwidth of 6.16 GHz is achieved at a thickness of 2.63 mm, and a strong reflection loss of -63.67 dB is obtained at a thickness of 2.00 mm. In addition, NC/Ni(HS)-10 shows a low infrared emissivity in the range of 3‒14 µm, which is the key to compatibility with infrared stealth. This work paves the way for the design of advanced MA materials that meet the requirements of multispectral-compatible stealth.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2412890"},"PeriodicalIF":14.3000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202412890","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The rational design of microwave absorption (MA) material featuring light weight, wide absorption bandwidth, and infrared stealth property is crucial for military stealth and health protection but remains challenging. Herein, an innovative N-doped carbon nanocage-in-microcage structure with tunable carbon-coated Ni (NC/Ni(HS)) is reported via a reliable Ni-catalyzed and Ni-templated method. The hierarchically hollow structure of nanocage-in-microcage composites can optimize the impedance matching and respond to multiple reflections and scattering of incident microwaves and infrared waves. Moreover, the magnetic Ni nanoparticles improve the synergistic interactions between confined heterointerfaces and promote interfacial polarization. Such an ingenious structure endows NC/Ni(HS) with outstanding MA performance and infrared stealth properties. Specifically, NC/Ni(HS)-10 with an optimal dielectric property, exhibits excellent MA performance. At an ultralow fill loading of 4 wt.%, a wide absorption bandwidth of 6.16 GHz is achieved at a thickness of 2.63 mm, and a strong reflection loss of -63.67 dB is obtained at a thickness of 2.00 mm. In addition, NC/Ni(HS)-10 shows a low infrared emissivity in the range of 3‒14 µm, which is the key to compatibility with infrared stealth. This work paves the way for the design of advanced MA materials that meet the requirements of multispectral-compatible stealth.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信