Soft hydrogel-embedded ceramic skeleton mimicking bone structure via sacrificial bond concept.

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL
Soft Matter Pub Date : 2024-12-17 DOI:10.1039/d4sm01205d
Sukamto, Miléna Lama, Jian Ping Gong, Takayuki Nonoyama
{"title":"Soft hydrogel-embedded ceramic skeleton mimicking bone structure <i>via</i> sacrificial bond concept.","authors":"Sukamto, Miléna Lama, Jian Ping Gong, Takayuki Nonoyama","doi":"10.1039/d4sm01205d","DOIUrl":null,"url":null,"abstract":"<p><p>Bone, consisting of calcium phosphate minerals, rigid collagen fibrils, and acidic proteins, exhibits stiff and tough mechanical properties. On a molecular scale, covalent cross-linking in proteins and ionic interactions within proteins and at the protein-mineral boundary contribute to bone's toughness. In addition, hierarchical structures, like the sponge-like arrangement, are also crucial for the energy dissipation system in bone. Inspired by the multiple sacrificial bonds found in bone, we developed a soft/hard composite made up of two components with contrasting mechanical properties: a porous calcium phosphate skeleton and an acidic polymer hydrogel matrix. The porous ceramic skeleton alone is extremely rigid but brittle. However, the presence of the hydrogel matrix transforms the brittle nature of the porous ceramic skeleton into a soft/hard composite with stretchable and tough characteristics. The composite exhibits significant energy dissipation due to the fracture of the ceramic skeleton under small deformation, while catastrophic failure of the composite is prevented because the hybridized matrix disperses the damage throughout the entire sample. The Ca<sup>2+</sup>-mediated ionic bonding within the matrix hydrogel and at the boundary between the gel and skeleton effectively transfers the stress, enhancing the composite's toughness. Furthermore, the cyclic deformation generates new bare surfaces on the ceramic skeleton, leading to increased interaction between the matrix and these new surfaces, which enhances the composite's healing capability. This study demonstrates that the concept of multiple sacrificial bonds in bone is a smart strategy for designing polymer-ceramic composites with excellent mechanical properties.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4sm01205d","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Bone, consisting of calcium phosphate minerals, rigid collagen fibrils, and acidic proteins, exhibits stiff and tough mechanical properties. On a molecular scale, covalent cross-linking in proteins and ionic interactions within proteins and at the protein-mineral boundary contribute to bone's toughness. In addition, hierarchical structures, like the sponge-like arrangement, are also crucial for the energy dissipation system in bone. Inspired by the multiple sacrificial bonds found in bone, we developed a soft/hard composite made up of two components with contrasting mechanical properties: a porous calcium phosphate skeleton and an acidic polymer hydrogel matrix. The porous ceramic skeleton alone is extremely rigid but brittle. However, the presence of the hydrogel matrix transforms the brittle nature of the porous ceramic skeleton into a soft/hard composite with stretchable and tough characteristics. The composite exhibits significant energy dissipation due to the fracture of the ceramic skeleton under small deformation, while catastrophic failure of the composite is prevented because the hybridized matrix disperses the damage throughout the entire sample. The Ca2+-mediated ionic bonding within the matrix hydrogel and at the boundary between the gel and skeleton effectively transfers the stress, enhancing the composite's toughness. Furthermore, the cyclic deformation generates new bare surfaces on the ceramic skeleton, leading to increased interaction between the matrix and these new surfaces, which enhances the composite's healing capability. This study demonstrates that the concept of multiple sacrificial bonds in bone is a smart strategy for designing polymer-ceramic composites with excellent mechanical properties.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Soft Matter
Soft Matter 工程技术-材料科学:综合
CiteScore
6.00
自引率
5.90%
发文量
891
审稿时长
1.9 months
期刊介绍: Soft Matter is an international journal published by the Royal Society of Chemistry using Engineering-Materials Science: A Synthesis as its research focus. It publishes original research articles, review articles, and synthesis articles related to this field, reporting the latest discoveries in the relevant theoretical, practical, and applied disciplines in a timely manner, and aims to promote the rapid exchange of scientific information in this subject area. The journal is an open access journal. The journal is an open access journal and has not been placed on the alert list in the last three years.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信