Amy R. Vandiver, Alejandro Torres Jr, Amberly Sanden, Thang L. Nguyen, Jasmine Gasilla, Mary T. Doan, Vahan Martirosian, Austin Hoang, Jonathan Wanagat, Michael A. Teitell
{"title":"Increased mitochondrial mutation heteroplasmy induces aging phenotypes in pluripotent stem cells and their differentiated progeny","authors":"Amy R. Vandiver, Alejandro Torres Jr, Amberly Sanden, Thang L. Nguyen, Jasmine Gasilla, Mary T. Doan, Vahan Martirosian, Austin Hoang, Jonathan Wanagat, Michael A. Teitell","doi":"10.1111/acel.14402","DOIUrl":null,"url":null,"abstract":"<p>The mitochondrial genome (mtDNA) is an important source of inherited extranuclear variation. Clonal increases in mtDNA mutation heteroplasmy have been implicated in aging and disease, although the impact of this shift on cell function is challenging to assess. Reprogramming to pluripotency affects mtDNA mutation heteroplasmy. We reprogrammed three human fibroblast lines with known heteroplasmy for deleterious mtDNA point or deletion mutations. Quantification of mutation heteroplasmy in the resulting 76 induced pluripotent stem cell (iPSC) clones yielded a bimodal distribution, creating three sets of clones with high levels or absent mutation heteroplasmy with matched nuclear genomes. iPSC clones with elevated deletion mutation heteroplasmy show altered growth dynamics, which persist in iPSC-derived progenitor cells. We identify transcriptomic and metabolic shifts consistent with increased investment in neutral lipid synthesis as well as increased epigenetic age in high mtDNA deletion mutation iPSC, consistent with changes occurring in cellular aging. Together, these data demonstrate that high mtDNA mutation heteroplasmy induces changes occurring in cellular aging.</p>","PeriodicalId":55543,"journal":{"name":"Aging Cell","volume":"24 3","pages":""},"PeriodicalIF":7.8000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/acel.14402","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/acel.14402","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
The mitochondrial genome (mtDNA) is an important source of inherited extranuclear variation. Clonal increases in mtDNA mutation heteroplasmy have been implicated in aging and disease, although the impact of this shift on cell function is challenging to assess. Reprogramming to pluripotency affects mtDNA mutation heteroplasmy. We reprogrammed three human fibroblast lines with known heteroplasmy for deleterious mtDNA point or deletion mutations. Quantification of mutation heteroplasmy in the resulting 76 induced pluripotent stem cell (iPSC) clones yielded a bimodal distribution, creating three sets of clones with high levels or absent mutation heteroplasmy with matched nuclear genomes. iPSC clones with elevated deletion mutation heteroplasmy show altered growth dynamics, which persist in iPSC-derived progenitor cells. We identify transcriptomic and metabolic shifts consistent with increased investment in neutral lipid synthesis as well as increased epigenetic age in high mtDNA deletion mutation iPSC, consistent with changes occurring in cellular aging. Together, these data demonstrate that high mtDNA mutation heteroplasmy induces changes occurring in cellular aging.
期刊介绍:
Aging Cell, an Open Access journal, delves into fundamental aspects of aging biology. It comprehensively explores geroscience, emphasizing research on the mechanisms underlying the aging process and the connections between aging and age-related diseases.