Xuan Zhou, Hualong Ge, Kai Xiong, Junjie He, Shunmeng Zhang, Li Fu, Zhilong Tan, Xiaofei Wu, Xuming Li, Haijun Wu, Junmei Guo, Yong Mao
{"title":"Unveiling the Origin of the Strengthening Mechanism in a Novel Precious Metal Multi-Principal Elements Alloy.","authors":"Xuan Zhou, Hualong Ge, Kai Xiong, Junjie He, Shunmeng Zhang, Li Fu, Zhilong Tan, Xiaofei Wu, Xuming Li, Haijun Wu, Junmei Guo, Yong Mao","doi":"10.1002/advs.202410936","DOIUrl":null,"url":null,"abstract":"<p><p>Precious metal electrical contact materials are pivotal in microelectronic devices due to their excellent chemical stability and electrical properties. Their practical application is hindered by the strength, contact resistance, and high cost. Multi-principal elements alloys (MPEAs) provide the possibility to develop cost-effective materials with enhanced mechanical properties. To address this, a novel precious metal MPEA, PdAgCuAuPtZn alloy, is designed, which exhibits significant solid solution strengthening and aging strengthening effects. The ultimate tensile strength increases from 747 MPa in the solution state to 1126 MPa in the aged state, while resistivity remains low. This study presents the first systematic investigation into the strengthening mechanisms of precious metal MPEAs using nanoindentation technology. These findings indicate that the aging strengthening of the alloy is attributed to spinodal decomposition (SD) and chemical short-range order (CSRO) in the matrix. Furthermore, the precipitation structure with Cu-rich and Ag-rich phases gradually replaces the matrix, primarily accounting for aging softening. Additionally, it is discovered that precipitation structure can be strengthened by CSRO formed in the Cu-rich phase, thus providing an innovative strengthening in PdAgCuAuPtZn alloy. These results will be beneficial to both deeply understanding the aging behaviors of PdAgCuAuPtZn alloys and designing high-performance precious metal MPEAs.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2410936"},"PeriodicalIF":14.3000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202410936","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Precious metal electrical contact materials are pivotal in microelectronic devices due to their excellent chemical stability and electrical properties. Their practical application is hindered by the strength, contact resistance, and high cost. Multi-principal elements alloys (MPEAs) provide the possibility to develop cost-effective materials with enhanced mechanical properties. To address this, a novel precious metal MPEA, PdAgCuAuPtZn alloy, is designed, which exhibits significant solid solution strengthening and aging strengthening effects. The ultimate tensile strength increases from 747 MPa in the solution state to 1126 MPa in the aged state, while resistivity remains low. This study presents the first systematic investigation into the strengthening mechanisms of precious metal MPEAs using nanoindentation technology. These findings indicate that the aging strengthening of the alloy is attributed to spinodal decomposition (SD) and chemical short-range order (CSRO) in the matrix. Furthermore, the precipitation structure with Cu-rich and Ag-rich phases gradually replaces the matrix, primarily accounting for aging softening. Additionally, it is discovered that precipitation structure can be strengthened by CSRO formed in the Cu-rich phase, thus providing an innovative strengthening in PdAgCuAuPtZn alloy. These results will be beneficial to both deeply understanding the aging behaviors of PdAgCuAuPtZn alloys and designing high-performance precious metal MPEAs.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.