Ziliang Zhang, Zhi Zheng, Yuxin Gao, Wang Li, Xiaoyu Zhang, Huan Luo, Shouqin Lü, Yu Du, Yan Zhang, Ning Li, Mian Long
{"title":"Developing a Flow-Resistance Module for Elucidating Cell Mechanotransduction on Multiple Shear Stresses.","authors":"Ziliang Zhang, Zhi Zheng, Yuxin Gao, Wang Li, Xiaoyu Zhang, Huan Luo, Shouqin Lü, Yu Du, Yan Zhang, Ning Li, Mian Long","doi":"10.1021/acsbiomaterials.4c01604","DOIUrl":null,"url":null,"abstract":"<p><p>Fluid shear stress plays a pivotal role in regulating cellular behaviors, maintaining tissue homeostasis, and driving disease progression. Cells in various tissues are specifically adapted to physiological levels of shear stress and exhibit sensitivity to variations in its magnitude, highlighting the requirement for a comprehensive understanding of cellular responses to both physiologically and pathologically relevant levels of shear stress. In this study, we developed an independent upstream flow-resistance module with high fluidic resistances comprising three microchannels. The validity of the flow-resistance module was confirmed via computational fluid dynamics (CFD) simulations and flow calibration experiments, resulting in the generation of steady wall shear stresses ranging from 0.06 to 11.57 dyn/cm<sup>2</sup> within the interconnected cell culture chips. Gene expression profiles, cytoskeletal remodeling, and morphological changes, as well as Yes-associated protein (YAP) nuclear translocation, were investigated in response to various shear stresses to authenticate the reliability of our experimental platform, indicating an increasing trend as the shear stress increases, reaching its maximum at various shear stresses. Our findings suggest that this flow-resistance module can be readily employed for precise characterization of cellular responses under various shear stresses.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c01604","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Fluid shear stress plays a pivotal role in regulating cellular behaviors, maintaining tissue homeostasis, and driving disease progression. Cells in various tissues are specifically adapted to physiological levels of shear stress and exhibit sensitivity to variations in its magnitude, highlighting the requirement for a comprehensive understanding of cellular responses to both physiologically and pathologically relevant levels of shear stress. In this study, we developed an independent upstream flow-resistance module with high fluidic resistances comprising three microchannels. The validity of the flow-resistance module was confirmed via computational fluid dynamics (CFD) simulations and flow calibration experiments, resulting in the generation of steady wall shear stresses ranging from 0.06 to 11.57 dyn/cm2 within the interconnected cell culture chips. Gene expression profiles, cytoskeletal remodeling, and morphological changes, as well as Yes-associated protein (YAP) nuclear translocation, were investigated in response to various shear stresses to authenticate the reliability of our experimental platform, indicating an increasing trend as the shear stress increases, reaching its maximum at various shear stresses. Our findings suggest that this flow-resistance module can be readily employed for precise characterization of cellular responses under various shear stresses.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture