SREBP1c-Mediated Transcriptional Repression of YME1L1 Contributes to Acute Kidney Injury by Inducing Mitochondrial Dysfunction in Tubular Epithelial Cells.
Wang Xin, Jie Zhou, Yuzhu Peng, Shuiqin Gong, Wenhao Liao, Yaqin Wang, Xixin Huang, Yang Mao, Mengying Yao, Shaozong Qin, Jiachuan Xiong, Yan Li, Qigang Lan, Yinghui Huang, Jinghong Zhao
{"title":"SREBP1c-Mediated Transcriptional Repression of YME1L1 Contributes to Acute Kidney Injury by Inducing Mitochondrial Dysfunction in Tubular Epithelial Cells.","authors":"Wang Xin, Jie Zhou, Yuzhu Peng, Shuiqin Gong, Wenhao Liao, Yaqin Wang, Xixin Huang, Yang Mao, Mengying Yao, Shaozong Qin, Jiachuan Xiong, Yan Li, Qigang Lan, Yinghui Huang, Jinghong Zhao","doi":"10.1002/advs.202412233","DOIUrl":null,"url":null,"abstract":"<p><p>Acute kidney injury (AKI) is a prevalent clinical syndrome with high morbidity and mortality. Accumulating studies suggest mitochondrial dysfunction as the typical characteristics and key process of AKI, but the underlying mechanism remains elusive. The YME1-like 1 (YME1L1) ATPase, an inner mitochondrial membrane protein, is screened and identified to be downregulated in renal tubular epithelial cells of various mouse models and patients of AKI. Dramatically, restoration of YME1L1 expression significantly alleviates cisplatin-induced AKI and subsequent chronic kidney disease (CKD) through attenuating mitochondrial dysfunction via maintaining optic atrophy 1 (OPA1)-mediated mitochondrial energy metabolism homeostasis. Mechanistically, the upregulated expression of sterol regulatory element binding transcription factor 1c (SREBP1c) is demonstrated to be responsible for cisplatin-mediated transcriptional inhibition of YME1L1 via directly binding to its promoter region. Moreover, cisplatin-induced methyltransferase-like 3 (METTL3)-mediated m6A modification enhances SREBP1c mRNA stability, thereby upregulating its expression. Notably, both depletion of SREBP1c and renal tubule-specific overexpression of YME1L1 markedly ameliorate cisplatin-induced AKI and its transition to CKD. Taken together, these findings suggest that METTL3-mediated SREBP1c upregulation contributes to AKI and its progression to CKD through disrupting mitochondrial energy metabolism via transcriptionally suppressing YME1L1. Targeting the SREBP1c/YME1L1 signaling may serve as a novel therapeutic strategy against AKI.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2412233"},"PeriodicalIF":14.3000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202412233","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Acute kidney injury (AKI) is a prevalent clinical syndrome with high morbidity and mortality. Accumulating studies suggest mitochondrial dysfunction as the typical characteristics and key process of AKI, but the underlying mechanism remains elusive. The YME1-like 1 (YME1L1) ATPase, an inner mitochondrial membrane protein, is screened and identified to be downregulated in renal tubular epithelial cells of various mouse models and patients of AKI. Dramatically, restoration of YME1L1 expression significantly alleviates cisplatin-induced AKI and subsequent chronic kidney disease (CKD) through attenuating mitochondrial dysfunction via maintaining optic atrophy 1 (OPA1)-mediated mitochondrial energy metabolism homeostasis. Mechanistically, the upregulated expression of sterol regulatory element binding transcription factor 1c (SREBP1c) is demonstrated to be responsible for cisplatin-mediated transcriptional inhibition of YME1L1 via directly binding to its promoter region. Moreover, cisplatin-induced methyltransferase-like 3 (METTL3)-mediated m6A modification enhances SREBP1c mRNA stability, thereby upregulating its expression. Notably, both depletion of SREBP1c and renal tubule-specific overexpression of YME1L1 markedly ameliorate cisplatin-induced AKI and its transition to CKD. Taken together, these findings suggest that METTL3-mediated SREBP1c upregulation contributes to AKI and its progression to CKD through disrupting mitochondrial energy metabolism via transcriptionally suppressing YME1L1. Targeting the SREBP1c/YME1L1 signaling may serve as a novel therapeutic strategy against AKI.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.