Sheath-enhanced concentration and on-chip detection of bacteria from an extremely low-concentration level.

IF 6.1 2区 工程技术 Q1 BIOCHEMICAL RESEARCH METHODS
Lab on a Chip Pub Date : 2024-12-17 DOI:10.1039/d4lc00698d
Xinye Chen, Ruonan Peng, Ruo-Qian Wang, Ke Du
{"title":"Sheath-enhanced concentration and on-chip detection of bacteria from an extremely low-concentration level.","authors":"Xinye Chen, Ruonan Peng, Ruo-Qian Wang, Ke Du","doi":"10.1039/d4lc00698d","DOIUrl":null,"url":null,"abstract":"<p><p>Microfluidic-based sheath flow focusing methods have been widely used for efficiently isolating, concentrating, and detecting pathogenic bacteria for various biomedical applications due to their enhanced sensitivity and exceptional integration. However, such a microfluidic device usually needs complicated device fabrication and sample dilution, hampering the efficient and sensitive identification of target bacteria. In this study, we develop and fabricate a sheath-assisted and pneumatic-induced nano-sieve device for achieving the improved on-chip concentration and sensitive detection of <i>Staphylococcus aureus</i> (MRSA). The optimized nanochannel design with diverging configuration is beneficial to the regulation of the hydrodynamic flow while the sheath flow is focusing the sample to the confined region as expected. Per the experimental finding, a high flow ratio (sheath flow/sample flow) presents enhanced target concentration by comparing with a low flow ratio. With this setup, MRSA bacteria with an extremely low concentration of ∼100 CFU mL<sup>-1</sup> are successfully and sensitively detected under a fluorescence microscope, less than 30 min, demonstrating a reliable sheath-enhanced concentration and on-chip detection for target bacteria. Additionally, the theoretical model introduced here further rationalizes the working principle of our nano-sieve device, potentially guiding the optimization of next generation devices for highly sensitive and accurate on-chip bacteria detection at a much lower concentration level below 100 CFU mL<sup>-1</sup>.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d4lc00698d","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Microfluidic-based sheath flow focusing methods have been widely used for efficiently isolating, concentrating, and detecting pathogenic bacteria for various biomedical applications due to their enhanced sensitivity and exceptional integration. However, such a microfluidic device usually needs complicated device fabrication and sample dilution, hampering the efficient and sensitive identification of target bacteria. In this study, we develop and fabricate a sheath-assisted and pneumatic-induced nano-sieve device for achieving the improved on-chip concentration and sensitive detection of Staphylococcus aureus (MRSA). The optimized nanochannel design with diverging configuration is beneficial to the regulation of the hydrodynamic flow while the sheath flow is focusing the sample to the confined region as expected. Per the experimental finding, a high flow ratio (sheath flow/sample flow) presents enhanced target concentration by comparing with a low flow ratio. With this setup, MRSA bacteria with an extremely low concentration of ∼100 CFU mL-1 are successfully and sensitively detected under a fluorescence microscope, less than 30 min, demonstrating a reliable sheath-enhanced concentration and on-chip detection for target bacteria. Additionally, the theoretical model introduced here further rationalizes the working principle of our nano-sieve device, potentially guiding the optimization of next generation devices for highly sensitive and accurate on-chip bacteria detection at a much lower concentration level below 100 CFU mL-1.

鞘增强浓度和芯片上的细菌检测从极低的浓度水平。
基于微流体的鞘流聚焦方法由于其高灵敏度和优异的集成度,已广泛用于各种生物医学应用的病原菌的高效分离、浓缩和检测。然而,这种微流体装置通常需要复杂的装置制作和样品稀释,阻碍了目标细菌的高效和敏感鉴定。在这项研究中,我们开发和制造了一种鞘辅助和气动诱导的纳米筛装置,用于提高金黄色葡萄球菌(MRSA)的片上浓度和灵敏度检测。优化后的分散构型纳米通道有利于水动力流动的调节,而鞘层流动则将样品聚焦到预期的受限区域。根据实验发现,与低流量比相比,高流量比(护套流量/样品流量)可以提高靶浓度。通过这种设置,在荧光显微镜下成功且灵敏地检测到极低浓度为~ 100 CFU mL-1的MRSA细菌,不到30分钟,证明了可靠的鞘增强浓度和目标细菌的芯片上检测。此外,本文引入的理论模型进一步合理化了我们的纳米筛装置的工作原理,有可能指导下一代装置的优化,在低于100 CFU mL-1的低浓度水平下进行高灵敏度和精确的片上细菌检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Lab on a Chip
Lab on a Chip 工程技术-化学综合
CiteScore
11.10
自引率
8.20%
发文量
434
审稿时长
2.6 months
期刊介绍: Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信