Photocatalytic intermolecular dearomative cycloaddition of phenanthrenes and naphthalenes with excited gem-difluoroalkenes

IF 11.5 Q1 CHEMISTRY, PHYSICAL
Yunxiao Zhang, Youyuan Guo, Yizhi Zhang, Shanshan Liu, Xiao Shen
{"title":"Photocatalytic intermolecular dearomative cycloaddition of phenanthrenes and naphthalenes with excited gem-difluoroalkenes","authors":"Yunxiao Zhang, Youyuan Guo, Yizhi Zhang, Shanshan Liu, Xiao Shen","doi":"10.1016/j.checat.2024.101200","DOIUrl":null,"url":null,"abstract":"Dearomative cycloaddition is a crucial method for constructing three-dimensional (3D) complex molecules from simple precursors, but the difficulty in exciting many arenes limits the application of this method. Herein, we report a photocatalytic intermolecular dearomative [2 + 2]/[4 + 2] cycloaddition of phenanthrenes and naphthalenes with excited <em>gem</em>-difluoroalkenes for the synthesis of fused <em>gem</em>-difluorocyclobutanes and <em>gem</em>-difluorocyclohexanes. Previous dearomative cycloaddition reactions involving excited phenanthrenes and naphthalenes required electron-deficient substituents to lower their excited-state energies, allowing for energy-transfer catalysis to occur. Our strategy involves excited-state <em>gem</em>-difluoroalkenes undergoing dearomative cycloaddition reactions with ground-state phenanthrenes and naphthalenes, enabling it to tolerate not only electron-deficient arenes but also electron-neutral and electron-rich arenes.","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":"30 1","pages":""},"PeriodicalIF":11.5000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.checat.2024.101200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Dearomative cycloaddition is a crucial method for constructing three-dimensional (3D) complex molecules from simple precursors, but the difficulty in exciting many arenes limits the application of this method. Herein, we report a photocatalytic intermolecular dearomative [2 + 2]/[4 + 2] cycloaddition of phenanthrenes and naphthalenes with excited gem-difluoroalkenes for the synthesis of fused gem-difluorocyclobutanes and gem-difluorocyclohexanes. Previous dearomative cycloaddition reactions involving excited phenanthrenes and naphthalenes required electron-deficient substituents to lower their excited-state energies, allowing for energy-transfer catalysis to occur. Our strategy involves excited-state gem-difluoroalkenes undergoing dearomative cycloaddition reactions with ground-state phenanthrenes and naphthalenes, enabling it to tolerate not only electron-deficient arenes but also electron-neutral and electron-rich arenes.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.50
自引率
6.40%
发文量
0
期刊介绍: Chem Catalysis is a monthly journal that publishes innovative research on fundamental and applied catalysis, providing a platform for researchers across chemistry, chemical engineering, and related fields. It serves as a premier resource for scientists and engineers in academia and industry, covering heterogeneous, homogeneous, and biocatalysis. Emphasizing transformative methods and technologies, the journal aims to advance understanding, introduce novel catalysts, and connect fundamental insights to real-world applications for societal benefit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信