Dual-Doping Strategy for Lowering the Thermal Expansion Coefficient and Promoting the Catalytic Activity in Perovskite Cobaltate Air Electrodes for Solid Oxide Cells
Shuxiong Wang, Xiaoxin Zhang, Yu Chen, Fan Fan, Chang Jiang, Yongkang Xiang, Xiao Xiao, Yuan Fang, Abdullah N. Alodhayb, Jianhui Li, Jijie Huang, Yifei Sun, Zhou Chen
{"title":"Dual-Doping Strategy for Lowering the Thermal Expansion Coefficient and Promoting the Catalytic Activity in Perovskite Cobaltate Air Electrodes for Solid Oxide Cells","authors":"Shuxiong Wang, Xiaoxin Zhang, Yu Chen, Fan Fan, Chang Jiang, Yongkang Xiang, Xiao Xiao, Yuan Fang, Abdullah N. Alodhayb, Jianhui Li, Jijie Huang, Yifei Sun, Zhou Chen","doi":"10.1002/smll.202410672","DOIUrl":null,"url":null,"abstract":"Lowering the thermal expansion coefficient (TEC) and promoting the catalytic activity of cobalt-based perovskite air electrodes is crucial for efficient solid oxide cells (SOCs) devices. However, the co-achievement of both merits has usually been largely compromised in most scenarios. Herein, a dual-doping strategy to manipulate the properties of perovskite cobaltate electrocatalyst is reported in which a high valence element of Ta<sup>5+</sup> is incorporated into B-site to significantly suppress the dynamic reduction of Co<sup>4+</sup> species and reduces the TEC value from PrBaCo<sub>2</sub>O<sub>5+δ</sub> (PBC, 17.8 × 10<sup>⁻6</sup> K<sup>−1</sup>) to PrBaCo<sub>1.96</sub>Ta<sub>0.04</sub>O<sub>5+δ</sub> (PBCT, 12.5 × 10⁻<sup>6</sup> K<sup>−1</sup>) and suppresses the oxygen loss in SOCs operation condition, revealing the improved structural stability. Meanwhile, the Ca<sup>2+</sup> is doped into A-site of Ta-incorporated candidate, further decreasing the covalency of Co─O bonds and facilitating the formation of oxygen vacancies, benefiting the oxygen exchange kinetics and leading to a low polarization resistance of 0.026 Ω cm<sup>2</sup> (800 °C) in as-prepared PrBa<sub>0.8</sub>Ca<sub>0.2</sub>Co<sub>1.96</sub>Ta<sub>0.04</sub>O<sub>5+δ</sub> (PBCCT) electrode. The cell with PBCTT demonstrates remarkable robustness during a 50 h thermal cycling test (25 cycles). Moreover, it delivers a high current density of 1.44 A cm⁻<sup>2</sup> (1.6 V, 800 °C), as well as attractive durability over 100 h for pure CO<sub>2</sub> electrolysis.","PeriodicalId":228,"journal":{"name":"Small","volume":"115 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202410672","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Lowering the thermal expansion coefficient (TEC) and promoting the catalytic activity of cobalt-based perovskite air electrodes is crucial for efficient solid oxide cells (SOCs) devices. However, the co-achievement of both merits has usually been largely compromised in most scenarios. Herein, a dual-doping strategy to manipulate the properties of perovskite cobaltate electrocatalyst is reported in which a high valence element of Ta5+ is incorporated into B-site to significantly suppress the dynamic reduction of Co4+ species and reduces the TEC value from PrBaCo2O5+δ (PBC, 17.8 × 10⁻6 K−1) to PrBaCo1.96Ta0.04O5+δ (PBCT, 12.5 × 10⁻6 K−1) and suppresses the oxygen loss in SOCs operation condition, revealing the improved structural stability. Meanwhile, the Ca2+ is doped into A-site of Ta-incorporated candidate, further decreasing the covalency of Co─O bonds and facilitating the formation of oxygen vacancies, benefiting the oxygen exchange kinetics and leading to a low polarization resistance of 0.026 Ω cm2 (800 °C) in as-prepared PrBa0.8Ca0.2Co1.96Ta0.04O5+δ (PBCCT) electrode. The cell with PBCTT demonstrates remarkable robustness during a 50 h thermal cycling test (25 cycles). Moreover, it delivers a high current density of 1.44 A cm⁻2 (1.6 V, 800 °C), as well as attractive durability over 100 h for pure CO2 electrolysis.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.